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Propósito – Este trabalho apresenta uma extensão a um modelo da literatura para o dimensionamento e sequenciamento 

de lotes em uma fundição de pequeno porte com múltiplos fornos alternados. O objetivo do modelo é minimizar custos 

de atraso e estoque. Além disso, busca-se o melhor aproveitamento da capacidade de carga dos fornos.   

Design/método/abordagem – Modelagem matemática é apresentada para o problema de dimensionamento e 

sequenciamento de lotes em uma fundição de pequeno porte. Dados oriundos das carteiras de pedidos da empresa foram 

coletados e questionários de validação do modelo foram aplicados.  

Resultados – O modelo estendido foi capaz de gerar bons planos de produção em diferentes horizontes de planejamento, 

com desempenho melhor que os atuais métodos obtidos pela empresa. 

Originalidade/valor – a extensão do modelo contribui com a literatura por abordar a existência de múltiplos fornos não 

simultâneos, característica pouco explorada até então. Uma comparação com outros modelos é realizada para indicar um 

modelo mais adequado para uma aplicação real. 

Palavras-chave: Dimensionamento de lotes. Fundição. Programação inteira mista. Sequenciamento de ligas.  

 

Purpose - This study presents an extension to a model in the literature for lot-sizing and scheduling in a small foundry 

with multiple alternate furnaces. The purpose of the model is to minimize delays and inventory costs. In addition, it 

determines the best use of the load capacity in the furnaces. 

Theoretical framework – Lot-sizing in foundries in the marketplace is a subject of academic interest due to its 

applicability and mathematical and computational complexity. Many papers address the production problem in 

foundries with a single furnace, however, few papers address the possibility of multiple furnaces. 

Design/methodology/approach - Mathematical modeling was used to represent the lot-sizing and scheduling problem 

in a small foundry. Data from the company's order books were collected and model validation questionnaires were 

applied. 

Findings - The extended model was able to generate good production plans at different planning horizons, with better 

performance than the current methods obtained by the company. 

Originality/value - the extension of the model contributes to the literature by addressing the existence of multiple non-

simultaneous furnaces, a feature that has not been greatly explored. A comparison with other models is performed to 

indicate the most suitable model for actual application. 

Keywords: Alloys scheduling. Foundry. Lot size. Mixed integer programming. 
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1. INTRODUCTION 

 

 

 The casting process is based on the production of items made of metal alloys.  The 

foundry industry is a primary company that supplies intermediate goods to other institutions, 

such as automotive, steel, construction, and others. 

For companies meeting market demand within an appropriate time window, it is 

essential to have good Production Planning and Control (PPC). The function of PPC is to 

schedule and control production so that a company meets production requirements as 

efficiently as possible. Decisions made at the PCP are hierarchical: i) strategic planning: long-

term planning, related to the highest level of the company, determining the company's global 

goals; ii) tactical planning: medium-term planning, responsible for the correct and timely use 

of the company's available resources; and iii) operational planning: short-term planning, that 

determines the decisions made in the company's daily routine (BONNEY, 2000). 

For Drexl and Kimms (1997), planning and scheduling production efficiently is one of 

the biggest challenges for company managers. In this context, the lot-sizing problem consists 

of determining, within a finite time horizon, in which periods there should be production and 

the number of items to be produced to meet their demands, subject to capacity constraints and 

minimizing total costs (BRAHIMI et al., 2006). 

The lot sizing and scheduling problem in a foundry can be seen as the search for a 

production plan that determines which alloys should be cast for manufacturing many items 

respecting the company's production constraints. This plan must minimize costs, such as 

furnace preparation, inventory maintenance, and order delays (CAMARGO; MATTIOLI; 

TOLEDO, 2012). 

Due to their importance in supplying parts to various industry sectors and market 

pressures (including competition and economic risks), foundries need to improve themselves 

to meet demands and profit from their operations. This improvement may arise from the 

technological modernization and/or technique refinement for process optimization to extract 

the maximum from the capacity installed. Due to their nature (usually small and medium-

sized companies with a large variety of products), market foundries face several difficulties in 

improving their performance because of the number of variables involved in the planning 

process and structural limitations. 
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Most of the literature deals with single furnace foundries. Despite the importance of 

using multiple furnaces common in foundries, few studies have addressed this issue. Silva and 

Morabito (2004) address the issue of multiple parallel furnaces. Toledo et al. (2014) proposed 

a mixed integer programming model for multiple alternating furnaces.  Thus, it is important to 

treat multiple furnaces as this is a relevant point for foundries. Furthermore, Clark, Almada-

Lobo, and Almeder (2011) point out the intrinsic relationship between lot-sizing and 

scheduling in process industries. The authors emphasize the need for production planning that 

considers both decisions simultaneously for efficient use of resource capacity to achieve 

planning with the appropriate use of mathematical modeling. 

In this paper, we propose an extension to a lot-sizing and scheduling model found in 

the literature. The model considers the use of multiple alternating furnaces, filling a gap in the 

literature. A comparison of results (objective function value, optimality gap, and sub 

utilization of the furnaces) of the extended model with other literature models contribute to 

indicating the one that may present the best performance for the production environment 

studied.  In addition, the model will be applied in a real foundry. The validation technique 

proposed by Oral and Kettani (1993) is used to verify if the proposed model is adequate for 

the production planning of a market foundry. As a result, a production plan of items and alloy 

sequencing in the furnaces is obtained to support decision-making at the operational and 

tactical levels. 

This paper is organized as follows: Section 2 presents the main works found in the 

literature on lot-sizing and scheduling in foundries. Section 3 introduces the methodological 

procedures used in this work. Computational tests performed for validation and application of 

the model in foundries are described in Section 4. A discussion of the results is presented in 

Section 5. Finally, conclusions and indications for future work are provided in Section 6. 

 

2. THEORETICAL FOUNDATION 

 

In Brazil, most cast products are sold to automotive and steel industries, produced in 

captive foundries, which are departments of large companies. In these foundries, production is 

serial, automated, and oriented to supply internal needs. A small portion of the cast products 

is left for other sectors such as the mechanical and infrastructure industries, and this small 

demand is met by small and medium-sized foundries, known as market foundries. The market 
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foundries are usually characterized by relatively low demand and little organized management 

structure, due to the absence of an adequate market policy (CAMARGO; MATTIOLLI; 

TOLEDO, 2012), (ARAUJO; ARENALES, 2003). 

The manufacturing process of a foundry can be summarized as follows: shape, internal 

cavities, and external fittings are made in the cores. Molding is the making of the molds that 

shape the outer parts of the piece. The molds and cores are combined into a single set of parts 

to receive the molten metal in the pouring stage. Melting transforms raw materials such as 

aluminum, pig iron, and other metal alloys into liquid metal. Once the molten metal and the 

cores and molds are ready, the casting process begins, in which the molten metal alloy is 

poured into the core mold assembly, filling all the cavities of the assembly. After a cooling 

time, the alloy solidifies, and the part is removed from the mold. The next step is deburring, 

where the part goes through the finishing processes. 

The lot-sizing problem in foundries has been widely studied due to its economic and 

academic importance. Mathematical models and solution methods for lot-sizing in foundries 

with a single furnace can be found in Santos-Meza and Oliveira (2002), Araujo and Arenales 

(2003), Araujo, Arenales and Clark (2004), Teixeira-Jr, Fernandes and Pereira (2006), Araujo 

et al. (2008), Tonaki and Toledo (2010), Camargo et al. (2012), Basiura et al. (2015), 

Stawowy and Duda (2017), Duda and Stawowy (2018). In these studies, mixed-integer linear 

programming models seek to minimize furnace setup costs (configuration changes), inventory 

costs, and item backlogs to determine a production plan for the alloys used in the furnace and 

the items to be produced are proposed. As solution methods, the authors use commercial 

solvers such as CPLEX, and different heuristics and meta-heuristics are proposed.  

Furtado et al. (2019) also address the lot-sizing and scheduling problem in market 

foundries with a single furnace, considering the orders to which the items belong. In addition 

to the traditional aspects addressed in other studies, the models proposed by the authors aim to 

minimize the cost delay in the delivery of orders with the possibility of partial deliveries. 

Li et al. (2017) present a mathematical profit maximization model for production 

planning in a market foundry with a flow shop system and limited capacity. Four different 

types of costs are considered in the model: material costs, process costs, machine utilization 

costs, and delay costs. A solution method based on a genetic algorithm is presented to solve 

the real problem. 
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Models with multiple furnaces, aiming to minimize setup costs, inventory, and item 

backlog are found in Silva and Morabito (2004) and Stawowy and Duda (2020), which 

consider production lines in which the furnaces can be used in parallel, i.e., simultaneously. 

An approach using multiple non-simultaneous furnaces is proposed by Toledo et al. (2014), 

who present a mixed integer programming model for multiple furnaces in a foundry located in 

the interior of São Paulo. A linear programming model with multiple kilns and an objective 

function to maximize the average efficiency of the kilns is presented and solved by Park 

(2013).  

It can be observed that the lot-sizing in market foundries is a subject of academic 

interest due to its applicability and mathematical and computational complexity. Many studies 

address the production problem in foundries with a single furnace; however, few works 

address the possibility of multiple furnaces. Thus, aiming to contribute with studies in this 

area and being a real problem of a foundry, this paper proposes a mathematical model that 

considers the possibility of the non-simultaneous use of multiple furnaces. In addition, a 

comparison of this model with models found in the literature will be performed in relation to 

the result of the objective function and under-utilization of the furnaces to determine the best 

model to be applied in a real case. 

 

3. METHODOLOGICAL PROCEDURES 

 

Modeling is a quantitative method that represents a production system in mathematical 

and computational language, using analytical techniques to determine values in a production 

system. This work is based on the Quantitative Normative Axiomatic Research methodology, 

common in Operations Research investigations. The research is called quantitative axiomatic 

because it is primarily oriented to idealized problem models and is normative because it is 

based on models that prescribe a decision for the problem (MORABITO; PUREZA, 2010; 

BERTRAND; FRANSOO, 2002). There is also an empirical part of the research as this work 

was done by analyzing a real problem. 

This section details the production environment studied and the methodological 

procedures used to address the problem of lot-sizing with multiple alternating furnaces in a 

small foundry. 
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3.1 Study object 

 

This study is based on a Brazilian market foundry located in the Triângulo Mineiro. 

The active structure of this foundry has a three-cavity furnace with nominal capacities of 800, 

800, and 400 kilograms (kg). Due to restrictions in the contracted energy demand, the cavity 

furnaces do not operate simultaneously, restricting the melting capacity to 800 kg per melt. 

This structure ensures that using a multiple crucible furnace has the same behavior and 

restrictions for lot-sizing and alloy sequencing as a multi-furnace foundry. 

The foundry works with a make-to-order system, producing only items that make up 

the order portfolio. Due to the great variety of products, all production is programmed based 

on orders released by the commercial sector. Each order may contain several items and 

different delivery dates, according to the customer's request. These factors may imply the 

fractioning of the order according to each item's available material and delivery date. 

Respecting the material constraint and delivery date, the PPC sector groups items from 

several orders to try to use the maximum capacity of each furnace. 

For better use of resources and cost reduction, the company forces the use of the 

maximum capacity of the 800 kg furnace. Using the 400 kg furnace takes place in two 

situations: when parts weighing more than 800 kg and less than 1200 kg are produced, or if 

the demand for items using the same alloy does not exceed 400 kg. In the first case, the 800 

kg crucible is used and then the 400 kg cavity until the complete melting of the material to be 

filled by the two crucibles sequentially. This process requires twice the casting time due to the 

need to alternate the furnaces. The foundry works with nodular and gray metal alloys. The 

composition of each alloy is given in Table 1. 

 

Table  1 - Cast Materials. 

Material Description Raw material Approximate composition 

60-45-12 Nodular Pig Iron 48.5% 

Nodular return 60-45-12 24.5% 

Steel Scrap 24.5% 

Special alloys and fuels 2.5% 

70-50-05 Nodular Pig Iron 48.5% 

Nodular return 70-50-05 24.5% 

Steel scrap 24.5% 
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Special alloys and fuels 2.5% 

80-60-03 Nodular Pig Iron 48.5% 

Nodular return 80-60-03 24.5% 

Steel Scrap 24.5% 

Special alloys and fuels 2.5% 

A48CL30 Gray Scrap iron 67.0% 

Steel scrap 15.0% 

Gray return 15.0% 

Special alloys and fuels 3.0% 

A48CL30S Special Gray Scrap iron 67.0% 

Steel scrap 15.0% 

Special gray return 15.0% 

Special alloys and fuels 3.0% 

Source: Authors (2021). 

 

As illustrated in Table 1, each alloy has at least one component (raw material) 

different from other alloys. For this reason, each furnace should contain only one type of alloy 

to be melted.  

Another important characteristic for the company is alloy melting temperature, 

according to the project to be cast. Parts with narrow ducts need a less viscous alloy to fill 

them, requiring a higher melting temperature. On the other hand, large parts can be melted at 

lower temperatures, reducing energy costs. Even though this work does not consider the exact 

melting temperature cost, the company adopts this premise and alters the entire production 

plan. To ensure the integrity in the comparison of the models, the strategy to avoid the 

technical issue of melting temperatures for the same alloy was to consider such different 

alloys. The 60-45-12 alloy, for example, may contain parts that require three different 

temperatures. Thus, we can assume up to three different alloys for the same material. 

Currently, the production planning is done two days in advance for the mold and core 

sectors (responsible for manufacturing molds and complements) and one day in advance for 

the foundry sector. This implies that the expected production for the two-day horizon is 

known except for some special cases. The exceptions are limited to parts with some 

constraint, such as a lack of mold, raw material, project, etc., or when the part urgently enters 

the portfolio, ensuring priority in its production. 



 
 

89 
 

 
Mathematical modeling to optimize production planning and scheduling in 

a small foundry with multiple alternating furnaces 

GEPROS. Gestão da Produção, Operações e Sistemas, v.16, n. 4, p. 82 - 114, 2021. 

The planning process begins after the orders are received and are validated by the 

commercial sector. The available order book is organized according to the due date for 

delivery of each order or item (when there are different due dates in the same order). The PPC 

is responsible for organizing the orders and creating the production orders. The mold and core 

sectors prepare the models to be casted. The foundry sector is responsible for melting the 

alloys and filling the molds. Finally, the parts are finished and available for invoicing and 

shipping to customers. Figure 1 illustrates the process described above until the casting and 

shipping of the part, highlighting the flow of information exchanged between the PPC and 

other areas involved in the production process. This factor is fundamental to synchronize the 

planning according to the available resources.  

 

Figure 1 - Flowchart of the casting process. 

 

Source: Authors (2021). 

 

Briefly, the casting process in the analyzed company follows the sequence below: 
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1. The PPC receives the orders validated by the commercial area (book order 

available). 

2. Planning begins for what will be cast two days ahead. The planning process consists 

of grouping the items by the delivery date and alloy type, prioritizing the most overdue items, 

and considering the melting capacity of the furnace. 

3. After grouping the items, production orders are created until the casting capacity is 

completed in one day. 

4. Once the production orders are completed, the orders are forwarded (at the end of 

the day or the beginning of the next day) to the core shop and mold-making department to 

start making the molds and cores. 

5. In parallel, one lane of the production orders is used for the alloy preparation. The 

alloy preparation consists of weighing and grouping all the metallic material that will 

compose each batch the next day in boxes prepared for the furnace loads. 

6. Two days after planning, the casting of the generated orders begins. The process 

consists of heating the furnace and melting each case of material prepared the day before. 

After the required time, the liquid formed is poured into the previously prepared molds. 

7. Next, the parts are demolded and given the necessary finishing touches to make 

them available for the billing and shipping sectors. 

 

3.2 Mathematical model 

Araujo, Arenales and Clark (2004) present a mathematical formulation to represent the 

production planning problem in foundries with a single furnace. This section presents the 

proposed model for the production planning of alloys with multiple alternate furnaces in a 

small foundry.  This model is an extension of the work proposed by these authors and will 

hereafter be called Multiple Alternating Furnace (MAF1) model. The indexes, input 

parameters and decision variables of the (MAF1) model are presented in Table 2: 
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Table  2 - Input parameters and decision variables of the Multiple Alternating Furnace 

model. 

Indices 

: Alloys 

: Items 

: Periods 

: Micro-periods 

: Furnaces (machines) 

Parameters 

: Number of items  ordered per period  

: Furnace capacity  per micro-period (kg). 

: Gross weight (kg) of item . 

: Penalty for delaying a unit of item  in period  

: Penalty for holding a unit of item  in period  

: Set of items  that use alloy  

: Penalty for preparation for alloy , in furnace .  

Decision Variables 

: Number of items  produced in furnace , in micro-period  . 

: Number of items  held at the end of period  

: Number of items  delayed at the end of period  

: 1, if there was preparation for alloy , in furnace , in micro-period ; 0, 

otherwise. 

: 1, if furnace m is prepared for alloy , in micro-period ; 0, otherwise. 

Source: Authors (2021). 
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Multiple Furnace Alternating Model: 

 

 

 

(1) 

S.t:   

 

 (2) 

 

 (3) 

  (4) 

 

 (5) 

  (6) 

  (7) 

 and integers  (8) 

 

The objective function (1) minimizes inventory, item delay, and furnace setup costs. 

Constraints (2) represent the balance of production and inventory of the items according to the 

demand. Inequalities (3) represent the capacity constraints (kg) of the furnace. The total 

amount of alloy to be melted must respect the total capacity of the furnace to which it has 

been allocated. Constraints (3) also ensure that the furnace is prepared to produce items of the 

same alloy. According to the alloy to be melted, the existence of furnace configuration 

changes is presented in constraints (4). Inequalities (5) ensure that at most a single furnace is 

prepared for a single alloy in each micro-period. The binary variable definition indicating 

furnace preparation and its initial period is given by constraints (6). Finally, in (7) and (8), we 

have the non-negativity and completeness constraints of the variables. 
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3.3 Model evaluation 

 The model evaluation compares the main aspects and differences between the 

proposed model and the models proposed by Araujo, Arenales and Clark (2004) and Toledo 

et al. (2014). Moreover, they verify which one best fits the data of the foundry studied. The 

models were solved by CPLEX 12.6.1 optimization software and the values obtained for 

objective function, optimality gap and underutilization of the furnace were compared. 

We used 19 instances found in the literature. The instances named from 1 to 11 were 

proposed by Tonaki and Toledo (2010) and the instances from 12 to 19 appear in the work of 

Camargo and Navarenho (2016). Table 3 shows the main characteristics of the instances 

adopted in the evaluation tests. 

 

Table  3 - Characteristics of the instances. 

Instances Alloys Items 

 

Periods 

(days) 

Capacity 

(Kg) 

 

Demand 

(Kg) 

Description 

1 5 165 3 11400 13863.9 Delayed items from the five most frequent 

alloys. 

2 5 165 5 19000 13863.9 Delayed items from the most frequent five 

alloys. 

3 5 228 3 11400 20139.45 All items from the five most frequent 

alloys. 

4 5 293 5 19000 24040.45 All items from the five most frequent 

alloys. 

5 16 225 3 11400 17211.3 All delayed items. 

6 16 225 5 19000 17211.3 All delayed items. 

7 16 224 3 11400 15441.5 Approximately 90% of the items are 

delayed. 

8 16 224 5 19000 15441.5 Approximately 90% of the items are 

delayed. 

9 15 224 3 11400 13731.3 Approximately 80% of the items are 

delayed. 

10 15 224 5 19000 13731.3 Approximately 80% of the items are 

delayed. 
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11 19 383 5 19000 29311.95 Complete book order. 

12 19 150 5 19000 11990.05 Items without delays and up to four days 

delivery time. 

13 8 199 5 19000 18129.05 Items without delays and up to four days 

delivery time. 

14 8 283 5 19000 23442.95 Items without delays and up to four days 

delivery time. 

15 8 383 5 19000 23442.95 Items without delays and up to four days 

delivery time. 

16 19 199 5 19000 18129.05 Items without delays and up to four days 

delivery time. 

17 19 283 5 19000 23442.95 Items without delays and up to four days 

delivery time. 

18 19 383 5 19000 29311.95 Items without delays and up to four days 

delivery time. 

19 8 150 5 19000 11990.05 Items without delays and up to four days 

delivery time. 

Source: Authors (2021). 

 

It can be seen in Table 2 that instances 1 to 11 present many delayed items, 

representing common scenarios in foundry industries. Instances 12 to 19, on the other hand, 

do not present delayed items. A particularity in the scenarios that start with many delayed 

items is camouflaging the furnace preparation costs. These costs become insignificant when 

compared to scenarios without delayed items. However, when considering a longer planning 

horizon and constantly updating the backlog items, there is a tendency to reduce the delay and 

increase the setup and furnace changeover costs, making this decision to be better analyzed. 

In other words, as the delay is reduced, the furnace setup becomes more significant in the 

decision-making process. Since the MFA1 model is a deterministic model, all input data are 

known a priori. Thus, in each instance represented in Table 2 all demanded items are known, 

as well as the specific alloy to be used and the weight (kg) of each item. The MFA1 model 

aims to meet the demand of the items, minimizing costs related to delays and inventory of the 

items and setup costs of the furnaces. The cost parameters for the tested instances were 

calculated as proposed by Araujo and Arenales (2003), as explained below: 

Let them be: 
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: Number of delayed periods for item  

: Number of anticipation periods of item  

 The backlog of an item suffers a penalty . The inventory cost of an item  

is calculated by . The cost definition allows the model to prioritize the 

production of backlog items, without disregarding costs inherent in the inventories of items. 

 

3.4 Model validation 

 

After carrying out computational tests with the instances shown in Table 2, which 

model could be applied to plan alloy production in the foundry studied was defined. Fachini et 

al. (2017) define validation of a model as the confirmation of the representativeness of the 

real scenario. The authors cite the comparison between the model result and that obtained by 

the company, collected in historical data, as an effective form of validation. However, this 

method is highly influenced by the quality of the defined parameters and model input data. 

Using consolidated methods to validate Operations Research (OR) problems is necessary to 

use the model on its merits and unbiased. Oral and Kettani (1993) present a tetrahedron-

shaped model validation framework with its facets and vertices: managerial, conceptual 

model, formal model, and decision. The authors state that most OR problems can be 

characterized with only three of the four vertices mentioned, forming one of the facets below: 

•  Descriptive facet: formed by the vertices Management situation, Conceptual 

model, and the Formal model. The focus is to understand the system or the management 

situation in which it is inserted.  

• Theoretical facet: formed by the stages Conceptual Model, Formal Model, and 

Decision. This facet seeks the construction of a formal model and solution methods that 

accurately represent the theoretical model. 

• Prototype facet: in this facet, the "Conceptual model" element is in the 

background. This facet deals with models that are already known and consolidated. The 

focus of this facet is to apply a formal model to assist in decision-making to solve a 

managerial situation. 
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Figure 2 demonstrates the tetrahedron formed by the vertices and facets of this 

validation process. 

Figure 1 – The quartet of the modeling validation process. 

 

Source: Oral and Kettani (1993). 

 

According to Oral and Kettani (1993), the validation of an OR model follows some 

practices according to the facet where the problem fits. For each facet, there are validations 

necessary for the acceptability of the problem. Table 4 presents the types of validations by 

facets proposed by the authors. 

Table  4 - Facets and validations 

      Facet 

 

Validation 

Prototype  Pragmatic Descriptive Theoretical 

Formulation x    

Legitimation  x   

Fitness   x  

Verifying    x 

Experimental x   x 

Operational x x   

Conceptual  x x  

Logic   x x 

Data x x x x 

Source: adapted from Oral and Kettani (1993). 



 
 

97 
 

 
Mathematical modeling to optimize production planning and scheduling in 

a small foundry with multiple alternating furnaces 

GEPROS. Gestão da Produção, Operações e Sistemas, v.16, n. 4, p. 82 - 114, 2021. 

 

This work deals with the proposition of a model to help decision-making that will 

directly influence an organization's bottom line. According to the previous descriptions, the 

proposed model is a problem that fits the Prototype Facet. Based on Table 4, the validation 

steps were defined and applied to the foundry analyzed. 

 

3.4.1.  Formulation validation 

 

 The MFA1 model extends the general lot-sizing problem by Araujo, Arenales and 

Clark (2004). This model and extensions have been published and disseminated in works with 

consolidated results, including the planning of small foundries and safely allowing the 

validation of the formulation. The adaptations of the MFA1 model do not alter the model's 

structure, corroborating the guarantee of the model's validity. 

 

3.4.2.  Data validation 

 

Crucial to the success of this work was the generation of planning solutions that can be 

applied in practice even if they do not guarantee the best possible result. Real data was 

collected, and the company's PPC consolidated the input data.  

Besides the input data, the process parameters that interfere in the proposed formal 

model were validated to ensure the minimum interference by parameter inconsistency. The 

parameters adopted in the literature were accepted by those involved in the planning stage and 

used due to the lack of actual knowledge of inventory, delay, and setup costs. Thus, the data 

and parameters used are valid. 

 

3.4.3.  Experimental validation 

 

For this validation step, the plans generated from the MFA1 model with real data, the 

current production plan practiced by the company, and a verification questionnaire were 

considered. The comparison of the two plans was the basis for this validation, as well as a 

questionnaire designed for those responsible for the PCP and for the company's production. 
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The quality of the solution obtained by the model and the perception of the users validate the 

experiment. 

Thus, the questionnaire for experimental validation focuses on the quality criteria 

exposed by Oral and Kettani (1993). The criteria are the level of perception obtained after 

knowing the model, sensitivity to changes in model parameters, acceptability level, 

applicability level, and usefulness level of the result generated. 

To assess the model's quality, Questionnaire 1 (Appendix 1) was distributed to the 

person responsible for production planning (technical level), to the person responsible for the 

technical department (Mechanical Engineer), and to the planning trainee (Mechanical 

Engineer). The interviewee answered the questions according to the scale: 1 - I don't agree; 2 

- I agree with restrictions and 3 - I agree completely. Complementary information given by 

the respondents are allowed. 

 

3.4.4.  Operational validation 

 

 Unlike experimental validation, operational validation is based on five main attributes 

related mainly to the executability of the formal model and its impact on the operation (ORAL 

AND KETTANI, 1993). These are: usability of the formal model, the real usefulness of the 

formal model, time to obtain the solution, the synergy of the result with the previous 

decisions, and the cost of implementing the model in practice. 

The validation of this step is the biggest barrier encountered mainly, due to the cost 

involved in implementing a PCP with an optimization tool. For this step, a questionnaire, 

Questionnaire 2 (Appendix 2), was developed for validation (distributed to the people 

responsible for planning) and comparisons between the real production plans and the one 

generated by the model were made. The same validation scale used for Experimental 

Validation was used for this Questionnaire. 
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4. RESULTS  

 

4.1. Model evaluation 

 

Computational tests were performed to find the best performance of the models 

proposed by Araujo, Arenales and Clark (2004), Toledo et al. (2014) and MFA1 using 

commercial optimization packages (CPLEX version 12.6.1).  All tests were performed by 

running the instances presented in Table 2 for 3600s on a computer with an Intel Core I3-

5005U CPU 2GHz processor with 4 GB of RAM.  

Table 5 presents the results obtained with CPLEX for the objective function (solution 

cost) and optimality gap. The smallest values for the solution cost and gap are highlighted in 

bold. 

 

Table  5 - Objective function and optimality gap for instances 1 to 19. 

Instance 

Araújo, Arenales and 

Clark 
Toledo et al. (2014) MFA1 

Solution 

cost 
Gap 

Solution 

cost 
Gap 

Solution 

cost 
Gap 

1 157232.75 0.58% 157226.25 0.72% 157126.45 0.53% 

2 157665.05 0.79% 157630.85 1.04% 157423.75 0.74% 

3 184048.91 0.55% 183823.48 0.64% 184195.73 0.74% 

4 217345.70 2.30% 215936.65 1.66% 216087.85 1.71% 

5 323053.10 1.20% 324733.60 2.04% 322834.70 1.07% 

6 359734.40 2.43% 360682.40 3.34% 359862.80 2.62% 

7 285478.80 1.16% 286306.00 1.91% 285289.65 1.14% 

8 303727.10 2.30% 305724.25 3.65% 306131.10 3.08% 

9 249764.20 1.36% 250603.25 2.13% 250399.60 1.70% 

10 256588.40 3.69% 256301.55 4.07% 253281.00 2.35% 

11 474126.54 2.05% 474534.26 2.99% 473743.84 2.01% 

12 14153.66 17.53% 14420.44 33.57% 14311.06 26.71% 

13 4072.48 50.34% 3985.69 68.50% 4279.21 69.63% 

14 17571.65 40.21% 17349.11 41.09% 17079.04 40.68% 

15 49001.19 10.84% 49837.66 12.44% 47187.44 7.50% 

16 7153.50 18.90% 8484.10 48.78% 7102.19 25.38% 

17 32148.50 4.74% 33626.69 14.11% 32440.18 6.23% 

18 79796.05 6.44% 79128.32 10.80% 79299.69 6.70% 

19 3666.13 17.81% 3309.70 31.60% 3241.13 27.07% 

Source: Authors (2021). 
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The results of waste in the furnace are presented in Table 6, in kilograms and as a 

percentage of waste. Waste indicates the volumes and the percentages of unfilled furnaces. In 

practice, waste represents extra rework, maintenance, and energy resources. Even though it is 

not directly in the objective function, the underutilization was analyzed because it represents 

an important factor for the foundry. This result refers to the used alloys left at the end of the 

furnace or unused space in the furnace. The percentage of the waste is defined by the value of 

the sum of waste of each furnace, in kilograms, divided by the sum of the volume of all the 

scheduled furnaces. It should be noted that the furnace waste is not part of the objective 

function due to the company not knowing the costs inherent to this factor. 

 

Table  6 - Waste for instances 1 to 19. 

Instance 

Araújo, Arenales and 

Clark 

Toledo et al. 

(2014) 
MFA1 

Waste (kg / %) Waste (kg / %) Waste (kg / %) 

1 191.05 1.68% 191.60 1.68% 191.30 1.68% 

2 956.10 6.45% 616.10 4.25% 716.10 4.91% 

3 164.30 1.44% 163.60 1.44% 164.85 1.45% 

4 452.85 2.38% 452.25 2.38% 453.00 2.38% 

5 1019.90 8.94% 400.50 3.72% 779.60 6.99% 

6 2039.45 10.73% 1798.35 9.59% 1799.45 9.59% 

7 1018.90 8.94% 780.70 7.00% 780.40 6.99% 

8 3558.50 18.73% 1978.50 11.36% 1978.50 11.36% 

9 1019.20 8.94% 778.25 6.97% 779.20 6.98% 

10 5268.70 27.73% 2648.70 16.17% 2408.70 14.92% 

11 1627.80 8.57% 1163.20 6.28% 1164.40 6.29% 

12 6973.95 36.70% 2067.35 14.62% 2005.35 14.26% 

13 2626.35 13.82% 1086.35 6.22% 1201.65 6.84% 

14 42.80 0.23% 167.30 0.88% 44.90 0.24% 

15 8.95 0.05% 4.50 0.02% 2786.85 15.05% 

16 2826.65 14.88% 1946.00 10.79% 2106.65 11.52% 

17 1343.75 7.07% 1030.65 5.57% 1343.15 7.07% 

18 1341.60 7.06% 877.00 4.74% 879.20 4.75% 

19 6906.95 40.39% 2366.95 18.85% 2966.95 22.55% 

Source: Authors (2021). 

 

Considering the results presented in Tables 3 and 4, a simple scoring criterion was 

created, comparing all instances of each model, with values at "0" for the best result and "1", 
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for the worst result. Figure 3 clearly shows which the best performance is for each instance. A 

color scale was defined to make it easier to interpret the results where red represents the 

worst-case scenario (closest to the value 1) and green, the best comparison scenario (0). It is 

worth noting that the model proposed by Araujo, Arenales and Clark (2004) works with a 

single furnace. 

 

Figure 2 - Visual comparison of the results obtained for the test instances. 

 

Source: Authors (2021). 

Analyzing the results presented in Figure 3 concerning the objective function value 

obtained, the MFA1 model achieved better results when compared to the other models in 

question. The smallest optimality gaps are observed in the model proposed by Araujo, 

Arenales and Clark (2004) for a single furnace. Considering the models with multiple 

furnaces, MFA1 showed a better objective function and optimality gap results than the model 

put forward by Toledo et al. (2014). Regarding furnace waste, the Toledo et al. (2014) model 

returned the best results. Thus, considering the company's need to use multiple furnaces, the 

good results obtained for the objective function, and the reasonable results obtained for the 

furnace waste, the MFA1 model was chosen as an application for the studied foundry. 
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4.2. Application of the MFA1 model in the foundry 

 

After defining the model to be adopted, the MFA1 model was solved using real data from 

the foundry, and the results obtained were compared with the current production plans 

practiced by the company. This section presents the results of the tests for the MFA1 model 

with the actual data collected at the company. For a broad comparison of the proposal, two 

scenarios were created: 

1) A tactical production plan with twenty-two periods and five micro-periods (furnace 

loads) each; to verify the fulfillment of the order book and the possibility of generating 

a raw material requisition plan. 

2) An operational production plan with five periods and five micro-periods (furnace 

loads); to verify the feasibility of the tactical planning. 

It can be emphasized that the foundry does not visualize the first case in advance and 

the entire material request plan is made based on a less precise horizon. For comparison 

purposes, the foundry's operational plans for one month were surveyed. 

The order book used to run the plan was collected from the company's PPC software. 

All orders available in the software up to the interview date with the company's employees 

were considered. There are 214 different items, totaling 146.1 tons of material to be melted. 

From this volume, approximately 19% were delayed at the start of planning (delivery planned 

for periods before the planning date) and approximately 18% had a delivery date for the 

planning month. Therefore about 53.53 tons of alloy were due for delivery in the current 

planning horizon. The remaining 92.60 tons of alloy are future orders, that is, they should be 

delivered in months after the current planning horizon. Figure 4 shows the quantity, in 

kilograms, of products demanded for the order book, considering the tactical planning with 

 periods, the available production capacity of  and the production plan 

generated by the MFA1 model. 



 
 

103 
 

 
Mathematical modeling to optimize production planning and scheduling in 

a small foundry with multiple alternating furnaces 

GEPROS. Gestão da Produção, Operações e Sistemas, v.16, n. 4, p. 82 - 114, 2021. 

Figure 3 - Comparison of available order book and plan generated by the model in 22 

periods. 

 

Source: Authors (2021). 

 

Considering a planning horizon with  periods, the MFA1 model practically 

eliminated delays and anticipated 33.02% of the future order book. The anticipation aims to 

reduce the furnace waste (occupation of 95.57% for the planned period) and is viable when 

holding costs are low. Figure 4 shows the scenario outlined in the plan compared to the 

available order book for the planning month. 99.99% of the backordered items were planned 

by weight. The unplanned items are four 1.3 kg parts that were left out of the tactical plan due 

to their low weight. Figure 5 illustrates the tactical plan generated compared to the sum of all 

operational plans made by the foundry during data collection. The same twenty-two periods 

were considered. A schedule that is 25.03% larger in casting volume than that performed by 

the foundry can be observed. This volume represents delayed items that were better allocated 

to the furnaces by the model, as well as anticipation of items, as illustrated in Figure 4. This 

scenario shows the unfeasibility of using the smaller capacity furnace. In some cases, holding 

costs may be lower than the setup cost for smaller furnaces. 
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Figure 4 - Monthly furnace utilization comparison. 

 

Source: Authors (2021). 

 

Figure 6 compares furnace utilization between the production plan executed by the 

company and the one proposed by the MFA1 model. The regular utilization of the furnace 

(realized) can be observed at around 75.9% for the analyzed week. In comparison, the plan 

generated by the MFA1 model prioritized the anticipation of items and reached an average of 

99.3% in the plans generated as a test. The difference in utilization found between the plan 

with twenty-two periods shown in Figure 5 (4.43%) and the operational plan with five periods 

shown in Figure 6 (0.7%) was expected. The model tends to regroup a larger volume of items 

precisely in a smaller planning period because it reduces the days available for production. By 

grouping the items for production better, the furnace waste was reduced. 
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Figure 5 - Comparison of furnace utilization for the operational plan. 

 

Source: Authors (2021). 

 

Finally, the delivery attendance of priority items (longest delay) was checked. There 

were no significant divergences between the current plan and the plan generated by the model. 

Due to the penalization of overdue items by the MFA1 model and the fact that the company 

already practices prioritization of overdue items, similar results were expected. 

Both operational and tactical plans deliver important results for the foundry. The 

operational plan ensures the best furnace utilization with weekly updating of the order book. 

The tactical plan allows decision-makers to visualize risk situations and create more precise 

strategies. 

 

4.3. Model validation questionnaire results 

 This section presents the results obtained from applying the experimental and 

operational validation questionnaires for the MFA1 model. Table 7 presents the answers 

obtained for Questionnaires 1 and 2. 
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Table  7 - Consolidated score of Questionnaires I and II. 

  Experimental 

validation 

Operational 

validation 

Questions  1 2 3 4 5 1 2 3 4 5 

Mechanical 

engineer (trainee) 
3 3 3 3 3 2 3 3 2 1 

Mechanical 

engineer  
3 3 3 3 3 2 3 3 3 1 

PPC Leader 3 3 3 3 3 2 3 3 2 1 

Average 3 3 3 3 3 2 3 3 2 1 

Source: Authors (2021). 

 

It can be observed that regarding Experimental Validation, those responsible for PCP 

consider it appropriate to use the MFA1 model to obtain a production plan that represents the 

company's reality and positively impacts the best use of the furnaces. The questionnaires also 

point out that a better definition of parameters generates more accurate results. 

Regarding Operational Validation, the most highlighted point in the questionnaire 

refers to the cost of implementing a commercial package (Question 5). The employees 

responsible for PPC judge that the costs of implementing the model to determine the planning 

and sequencing of items and alloys are not compatible with the budget available by the 

company. As an alternative, it is suggested to use heuristics already consolidated in the 

literature or less robust packages but financially feasible. Question 1 shows observations 

regarding the model operationalization. However, it is the consensus of the team members 

that by generating standard bases and training the team, the difficulty of developing the plan 

is overcome. 

Finally, the barriers signaled in Question 4 refer to the possibility of a high quantity of 

planned items occurring in a single furnace load, as mentioned previously. However, this does 

not make using the model unfeasible in practice because they are isolated events and items 

with many parts can be programmed manually. 

 

5. DISCUSSIONS 

 

The present work corroborates papers found in the literature regarding the mathematical 

model for lot-sizing and scheduling items in small foundries. Thus, as Araujo et al. (2008) 



 
 

107 
 

 
Mathematical modeling to optimize production planning and scheduling in 

a small foundry with multiple alternating furnaces 

GEPROS. Gestão da Produção, Operações e Sistemas, v.16, n. 4, p. 82 - 114, 2021. 

pointed out, the mathematical model can build good production plans in a computationally 

shorter time and with better use of the furnaces than the current methods practiced by the 

company. 

 As the MFA1 model aims at minimizing holding and delayed costs of items, an 

advantage of its application for the foundry is to generate a production plan for  

periods. This plan can meet about 99% of the delayed items at the beginning of the production 

planning. This result is relevant since the company itself seeks to prioritize the production of 

delayed items due to costs incurred in the delay of orders and better organization of 

production planning. Additionally, it improves the company's relationship with customers. 

 Regarding optimality gaps, analyzing Table 5, it is noted that CPLEX achieved good 

solutions in solving the MFA1 model for instances 1 to 11. For these instances, we have an 

average optimality gap of 1.61%, indicating these solutions are close to optimal. For the larger 

data sets, represented by instances 12 to 19, CPLEX found it difficult to solve all three models 

tested. This result was already expected, as Duda and Stawowy (2018) pointed out when they 

noted that the use of heuristic or meta-heuristic algorithms is more appropriate for solving 

large instances. 

 Tonaki and Toledo (2010), Camargo et al. (2012), and Furtado et al. (2019) suggest 

the importance of reducing furnace waste for market foundries. The waste is caused by 

allocating alloys to be melted in smaller quantities than the furnace capacity. The MFA1 

model showed an average waste of 8.20% of furnace capacity across all instances, which is 

slightly worse than the average 6.98% waste obtained by the model of Toledo et al. (2014). 

However, the MFA1 model obtained lower total costs in the objective function, which is why 

it was chosen and applied to the foundry under study. 

 However, the difficulty presented by the company when determining delay and 

inventory costs should be mentioned. These costs were determined subjectively for this work. 

The cost parameters do not invalidate the model. The people involved in the validation 

process stated that the parameters proposed by the literature (inventory and delay costs) assist 

in decision making and can be used until the actual foundry cost survey. 

Limiting production planning to two days in advance is the minimum acceptable by 

the company for the schedule to proceed without major interferences. Increasing this planning 

capacity can reduce the risks of mold shortages, delays, and waste furnaces. Moreover, the 

plan will provide important information to those responsible for procurement and 
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communication with customers, as well as predict the billing for the period. Another 

advantage is the elimination of idleness in the core shop and mold-making sectors.  

Due to the possibility of a sudden increase in demand, it is considered interesting to 

extend the model to plan the use of parallel furnaces. This situation requires dedicated 

analysis, due to the increase in demand for contracted energy and, consequently, the increase 

in setup costs. This alternative is valid to reduce delays or increase production capacity 

without large investments in capital goods. 

 

6. CONCLUSIONS 

 

This paper presents an extension to a literature model for the lot-sizing and scheduling 

problem with multiple alternate furnaces in a small foundry. The contribution to the literature 

is in the mathematical modeling of a real problem little addressed in previous works. In 

addition, comparative tests between the proposed model and two others existing in the 

literature were performed to define if the model could represent the company's production 

planning. The comparison between models that consider multiple non-simultaneous furnaces 

brings new contributions to select a model that best fits the characteristics presented in the 

literature for the problem.  

Operational plans were generated with a five-day planning horizon, using actual data 

provided by the company's Production sector. The results obtained using the model 

determined a production plan with lower costs than those currently practiced by the company. 

Moreover, better utilization of the furnaces' capacity was provided. In order to assist the 

decision-making process at the managerial level, tactical plans were generated, with a 

planning horizon of twenty-two days. The tactical plan anticipates the production of 

demanded items leading to better utilization of the foundry's installed capacity. 

 To validate the use of the proposed model, two questionnaires were conducted with 

the people responsible for the company's Production sector. The respondents had to rate their 

perceptions regarding the results obtained by the model. It was concluded that the model 

represents the lot-sizing and scheduling problem for the studied foundry. However, 

implementing optimization software is not economically feasible for the company. 

 In the future, we suggest carrying out a precise survey of costs contained in the 

objective function and other operating costs. A lack of knowledge of these costs is common in 
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the process industry. Thus, the reliability of the production plans generated by the model will 

be increased. Another suggestion for the model application is the inclusion of constraints to 

regulate the number of items to be produced per furnace load. This point was raised during the 

questionnaire and may be a limiting factor due to the production capacity of boxes. This 

suggests a model extension to multiple levels, considering the foundry planning integrated 

with the other productive sectors such as core shop, mold making and finishing. 
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Appendixes 

Appendix I - Questionnaire 1: Experimental validation 

Questionnaire 1 - Experimental validation 

Position  

Main functions  

Time on the job  

Schooling  

Score: 1 – I do not agree 

             2 – I agree with restrictions 

             3 – I completely agree 

1 - Do you agree that using the proposed model leads to a better perception of the impact of production 

planning?  

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

2 - Do you think that changing the parameters in the model can represent operational reality? 

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

3 - Can the presented model be used to size and schedule the items and formulate production plans? 

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

4 - Does the model faithfully present the lot sizing and production planning problem?  
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Score: 

1,2 or 3? 

 Please, explain why. 

 

 

5 - Is the result useful and can it contribute, in any way, to developing production plans?  

Score: 

1,2 or 3? 

 Please, explain why. 

 

Source: Authors (2021). 

Appendix 2: Questionnaire 2 - operational validation 

Questionnaire 2 - Operational validation 

Position  

Main functions  

Time on the job  

Schooling  

Score: 1 – I do not agree 

            2 – I agree with restrictions 

            3 – I completely agree 

1 - Do you consider the model's operationalization simple? 

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

2 - Is the model useful to formulate production plans in synergy with the company's strategies? 

Score:  Please, explain why. 
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1,2 or 3?  

 

3 - Does data input and model execution provide a timely solution for utilizing the production plan?  

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

4 - Are the results obtained in line with the premises and observations prior to production planning? 

Score: 

1,2 or 3? 

 Please, explain why. 

 

 

5 - Is the cost to implement an optimization system coherent with the obtained result and is it tangible for 

the company? 

Score: 

1,2 or 3? 

 Please, explain why. 

 

Source: Authors (2021). 

 

 


