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Propósito – Este trabalho tem como objetivo desenvolver um modelo hipercubo não-estacionário capaz de unir as propriedades que os 

modelos para ambos os problemas de localização e programação de turnos.  

Framework Teórico – Apresentamos o modelo proposto usando uma cadeia de Markov de tempo discreto-contínuo mista e 

comparamos com uma simulação de evento discreto por meio de um exemplo ilustrativo. 

 Design/metodologia/abordagem, – O método usado neste artigo é quantitativo com uma comparação entre uma abordagem de 

simulação e um modelo exato. 

 Resultados – Os resultados mostram uma grande similaridade entre os dois modelos. No entanto, o modelo proposto não apresenta 

ruído em medidas de desempenho como tempos de espera e tempo de deslocamento. No entanto, o estudo de seus resíduos revelou que o 

modelo proposto apresenta menor sensibilidade a eventos, como finais de turnos e imperfeições nas preferências de despacho. Novos 

estudos podem reduzir essa variação por meio de melhorias nos cálculos das medições de desempenho. 

Pesquisa, Prática & Implicações Sociais – Os resultados citados sugerem que o modelo proposto pode se tornar uma opção para 

aplicações unindo problemas de localização e programação de turnos. 

Originalidade/valor – Ao desenvolver problemas de localização, buscamos modelos que sejam capazes de representar as características 

geográficas pertinentes ao problema. Por outro lado, ao desenvolver problemas de programação de turnos, buscamos modelos capazes de 

captar flutuações transitórias nos componentes (como demanda, tempos de atendimento, mão de obra disponível, entre outros) de tal 

sistema. Portanto, na busca de melhorar o desempenho diário de sistemas, tais como sistemas de serviço de emergência (ambulâncias, 

polícia, bombeiros), usando qualquer um dos dois problemas individualmente, pode levar a conclusões errôneas.  

  Palavras-Chave - Sistemas de Serviço de Emergência; Teoria de filas; Hipercubo não-estacionário; Simulação de eventos discretos; 

Medidas de desempenho. 

 

 Purpose – this paper aims to develop a non-stationary hypercube model capable of uniting the properties that models for both problems 

seek (location and shift-scheduling problems).  

 Theoretical framework – We present the proposed model using a mixed discrete-continuous time Markov chain and compares it to a 

discrete-event simulation through an illustrative example. 

 Design/methodology/approach – The method used in this paper is quantitative with a comparison between an approach of simulation 

and an exact model. 

 Findings – The results show a high similarity between both models. However, the proposed model does not present noise in 

performance measures such as waiting times and travel times. Nevertheless, the study of their residuals revealed that the proposed model 

has a lower sensitivity to events, such as shift endings and imperfections in dispatch preferences. Further studies may reduce such a 

variation by improvements in the calculations of performance measurements. 

 Research, Practical & Social implications – The mentioned results suggest that the proposed model may become an option for 

applications uniting location and shift-scheduling problems. 

  Originality/value – When developing location problems, we seek models that are capable of representing the pertinent geographic 

characteristics to the problem. On the other hand, when developing shift-scheduling problems, we seek models capable of capturing 

transient fluctuations in the components (such as demand, service times, available workforce, among others) of such a system. Therefore, 

in the search to improve the daily operations of systems, such as emergency service systems (ambulances, police, firefighters) using 

either of the two problems individually, it may lead to flawed conclusions.  

Keywords - Emergency Service Systems; Queueing Theory; Hypercube non-stationary; Discrete Event Simulation; Performance 

Measurement. 
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1. INTRODUCTION 

 

 

 Operating services, such as Emergency Service Systems (ESS), require that the 

available staffing capacity matches the demand for service throughout the day. The 

manager's challenge is to schedule service hours to match with demand at different times of 

the day, while keeping costs under control and respecting all applicable laws 

(INGOLFSSON et al., 2002). The fundamental requirement is that there is enough staff 

working to achieve planned service levels (GREEN et al., 2001). 

Scheduling servers is a challenge for any service, from banks, restaurants, stores, and 

airports, to call centers (INGOLFSSON et al., 2010). Call centers may be the most studied 

operation for such problems, since they may be part of the customer service, help desk, and 

ESS operation (GANS et al., 2003). Its operation is subject to uncertainties regarding 

demand and staff availability (MANDELBAUM et al., 2009; PATRICK et al., 2008). 

Scheduling problems have a non-linear nature due to time-varying and stochastic 

characteristics. For example, the arrival processes may follow a non-homogeneous Poisson 

process; the number of working servers may vary in time. As such, these problems have 

dynamic and stochastic aspects, being called non-stationary, and Queueing Theory is one of 

the capable tools to handle these features. Those interested in solving scheduling problems 

may look for Defraeye e Van Nieuwenhuyse (2016) and the references therein. 

Chapman-Kolmogorov differential equations represent the exact behavior of a non-

stationary queueing system (INGOLFSSON et al., 2002). These equations only have 

analytical solutions in special cases – when the system has infinite servers and the arrival 

and service rate functions have no discontinuities (SCHWARZ et al., 2016). Therefore, in 

most cases they are numerically solved by methods such as Euler or Runge-Kutta. Although 

computationally expensive, these numerical solutions serve as benchmarks for 

approximations (GILLARD; KNIGHT, 2014; SCHWARZ et al., 2016). 

Among the challenges to model such systems, one must cope with time-varying 

staffing behavior. Ingolfsson et al. (2007) presents, continuing from Ingolfsson (2005), a 

way to model a specific behavior of systems during end-of-shifts. Such a behavior is called 

end-of-shift discipline. The problem shown in Ingolfsson (2005) was to represent end-of-

shift in situations that the servers must finish the ongoing services before leaving the system. 

The authors refer to this end-of-shift discipline as exhaustive (we call it as non-preemptive 
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throughout the text). The counterpoint to an exhaustive discipline is a pre-emptive 

discipline, where servers interrupt their ongoing services so that users go back into the head 

of the line. 

Many ESSs are characterized as spatially distributed queue systems. Examples of 

these services include police, firefighters and ambulances (GALVÃO; MORABITO, 2008). 

Usually, the hypercube queuing model (LARSON, 1974) is used to model such services. To 

the best of our knowledge, the work with the hypercube model use stationary 

approximations, analyzing systems at their peak period, as in Takeda et al. (2007), Atkinson 

et al. (2008), Burwell et al. (1993), Iannoni et al. (2015), Geroliminis et al. (2011), among 

others. 

For being able to cope with a city's geographic complexity and complex dispatch 

policies, hypercube models are a popular tool for probabilistic location problems. As a 

descriptive model, the hypercube model alone does not find solutions to location problems 

but is able to provide decision makers with performance measures for any previous server 

location scheme (MARIANOV; REVELLE, 1996). Note that the scope of this study focuses 

only on the descriptive model (hypercube model). Therefore, we do not present or discuss 

location problems in details. Readers interested in further literature on the hypercube model 

and location problems are encouraged to read Boyaci and Geroliminis (2015), Rodrigues et 

al. (2017) and Owen and Daskin (1998) and the references therein. 

Although many studies have developed extensions to Larson's (1974) classic 

hypercube model on the the operation of the most diverse ESSs, few use the hypercube 

model beyond the peak period. One of the examples is Souza et al. (2015), who considered 

three different periods of the day (morning, afternoon and night), when studying a Brazilian 

Emergency Medical System (EMS). Another example is Rajagopalan (2008), which also 

used an approximate hypercube model in three periods of the day. Ansari et al. (2017) 

studies an EMS in two periods of the day. 

However, an analysis of ESSs only at limited periods of the day may fail for several 

reasons. Firstly, only observe arrival rate stability. This can be a problem in case there is any 

end-of-shift or meal breaks during the period of steady demand. Secondly, experience shows 

that ESSs have low event frequencies and therefore take longer to reach equilibrium. This 

problem has already been pointed out in Green et al. (1995). 

As such, the strict application of a location problem can be compromised, turning the 
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combination with scheduling problems attractive. Therefore, it is necessary to develop a 

model capable of dealing with the dynamic, non-linear, and spatial aspects of the daily 

operation of an ESS. 

In this study, the hypercube model considers time-varying parameters such as arrival 

rates, number of servers, service times, etc. We present the proposed model using a mixed 

discrete-continuous time Markov chain. The model considers non-preemptive end-of-shift 

discipline (INGOLFSSON et al., 2007). Then, the results of the proposed model are 

compared to those obtained by a discrete-event simulation (independent of the proposed 

model) in an illustrative example. Simulation is usually used when developing hypercube 

models to check for possible errors during the modeling process, since simulations are 

capable of providing the same performance measures with similar assumptions (IANNONI 

et al., 2015). The comparison evaluates the model's ability to represent the same system as a 

noise-free simulation, as well as its computational performance. 

The study is structured as follows. Section 2 presents the non-stationary hypercube 

model using an illustrative example. Section 3 describes the construction of the discrete-

event simulation, as well as its characteristics and data collection for comparison. Section 4 

presents the computational results obtained by the proposed model and the simulation and 

the comparisons of the performance measures. Finally, Section 5 provides final 

considerations and further research propositions. 

 

2. THEORETICAL FOUNDATION 

 

2.1 Non-Stationary Hypercube Model 

An illustrative example helps to present the proposed model.  shows a five-atom 

system that operates over 24 hours. Atoms suffer no changes in size or identification over 

time. The system has three servers located at North, Central and East atoms, respectively, 

operating in three shifts. The first shift is the only one in which all three servers operate, in 

the other two shifts the server of the east atom is removed. All operating servers are 

scheduled to leave at the end of a shift. They follow a non-preemptive end-of-shift 

discipline. Moreover, they do not have to wait for the return of a unit to start operating. For 

modeling purposes, the queue has been limited to 5 users. 
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Figure 1 – Illustrative example map containing atoms and location of units, accompanying 

the dispatch preference list and inter-atom travel times. 

 

 

Source: The authors.  

 

The call arrival process follows a non-homogeneous Poisson process (KIM; WHITT, 

2014), which is a result of time-varying probabilities for a user to enter the system. A 

common approach to model this process is to break time into intervals with constant rates 

(BROWN et al., 2005).  Figure 2 shows total arrival rates throughout the 24 hours of 

operation and server work shifts. Service times are discussed in Section 3, along with each 

scenario. 

 

Figure 2 – Arrival rates and server shifts. 

 

Source: The authors.  
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Since the hypercube model is an expansion of the states of a M/M/s/K model (for 

cases with a limit on the maximum queue size) to represent the servers individually, the 

system’s dynamic is straightforwardly obtained from Chapman-Kolmogorov differential 

equations. (TAHA, 2008). The system of differential equations ( represents system behavior 

throughout the first shift (between 6 and 15 hours) when all servers are operating. 

 

 

 

 

 

 

 

 

 

 

(1) 

 

If the system does not face changes in the number of servers and in the arrival rate, 

solving this set of differential equations (a continuous-time Markov chain) would suffice. 

Otherwise, a discrete-time Markov chain must represent the system behavior the moment a 

server leaves the system. 

Table 1 presents a list of the variables used throughout this study. Note that system 

states are represented generically by the letters  and  and can be described as follows: 

. Performance measures have been left out of this table and are presented in 

more detail in Section 2.3. 
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Table 1 – Description and definitions for the variables and parameters used. 

Variable Variable Type Meaning Representation 

 Real vector System state probabilities vector for instant . 
 

 Calls/hour System total service rate for instant . 

 

 Natural number Number of atoms in the system. - 

 Calls/hour System total arrival rate for instant . 

 

 Real matrix 
Continuous-time Markov chain for instant . 

Coefficient matrix .  

 Real matrix 
Discrete-time Markov chain for instant . Transition 

matrix with elements .  

 Binary vector 
Indicates which servers are occupied (1) or not (0) in 

state .  

 Binary vector 
Indicates which servers are currently operating (1) or 

not (0) for instant .  

 Binary vector 
Indicates which users in attendance will be "ejected" 

(1) or not (0).  

 Binary vector 

Indicates servers that are leaving (1) or not (0). It 

exists for all end-of-shifts (even if no server is 

leaving). 
 

 Binary vector 
Number of queued users assigned to newly available 

servers.  

 Natural number Number of users in the queue. - 

 Real number Occurrence probability of vector  at instant . - 

 Set Set of permutations that queued users can assume. - 

 and  Time (hours) 
Time instant just before  and right after instant , 

respectively. 
 

Source: The authors.  

 

2.2 Exhaustive end-of-shift discipline (non-preemptive) 

 

If we consider that the illustrative example is an EMS, servers are now called 

ambulances. The model follows a non-preemptive end-of-shift discipline, that is ambulances 

always finish their calls before leaving the system at the end of the shift. Therefore, as in the 

model M(t)/M/s(t) by Ingolfsson et al. (2007), users in attendance by ambulances to leave 

must be “ejected” from the system, since their servers do not answer to any other users 

afterward. Keep in mind that the model does not eject users from the system, in reality. They 

are only disregarded in the analysis because they do not affect further performance 

measurements. 

As in Ingolfsson et al. (2007), the model can be defined as a mixed discrete-

continuous time Markov chain. Equation (1) illustrates how the model works. 
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 =  (1) 

 

The transition matrix  is built from the following events: users are “ejected”, and 

queued users are distributed to the new available servers. The following equations (3-5) 

work for the three-server illustrative example. However, one can easily be extended them to 

systems with more servers. The first set of elements  from  is computed using 

Equation (3). They represent the situation where users are “ejected” ( ) and there are no 

calls in the queue to be distributed to the new servers. The second set of elements is 

computed using Equation (4). In this case, apart from “ejecting” users, the queued ones are 

assigned to the new available servers and at least one server will remain available. Finally, 

Equation (5) represents the case that even after “ejecting” users and distributing queued 

ones, the system will remain saturated (no available servers). 

 

 
(2) 

 

(3) 

 
(4) 

 

To calculate the likelihood of assigning queued users to servers , it is 

necessary to estimate the possible permutations that the queued users form and the 

probabilities of the existence of each permutation. It happens because the model does not 

keep track of queued users’ locations. The process for estimating the probability of each 

permutation is illustrated in Figure 3 for a situation with two queued users during the shift 

change at 06:00 hrs. 
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Figure 3 – Computing permutations of queued users and their probabilities (example with 

two queued users). 

 

 
 

Source: The authors. 

 

The model uses the dispatch preference list to assign queued users from each 

permutation to new servers. Figure 4 presents the result of the transition to the mentioned 

instant. Note that in instant  server 3 is marked as idle {0}. However, it is not operating 

during the third shift, thus the system gets saturated when servers 1 and 2 are busy. The 

transition is shown in two steps. In the first step, the users with busy servers are “ejected” 

because they are leaving the system for new servers to enter in their positions. Recall that 

users are not ejected from the system, in reality. In the second step, the model computes to 

which state each permutation of queued users would take the system. In other words, it 

assigns the queued users (following a FIFO discipline) to the newly available servers. For 

example, permutation 3 is assigned to state {101} because the first user in the queue 

originates from atom C and has server 1 as its preferred server; while the second call in the 

queue originates from atom S and would also have server 1 as preferred, however server 3, 

the first backup to atom S, is sent (server 1 got busy with the first call in the queue). 
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Figure 4 – Example of an instantaneous state transition occurring at the end of a shift, 

illustrating the assignment of queued users’ permutations to the new servers. 

 

 
Source: The authors.  

}  

2.3 Non-stationary hypercube model assumptions 

The construction of a non-stationary hypercube model, as shown up to this point, is 

subject to the adherence to simplifying assumptions (such as the stationary hypercube 

model). The assumptions are listed below: 

i) Existence of geographic atoms: the region where services are provided should be 

divided into NA geographic atoms, where each atom corresponds to an independent 

source of users. Atoms cannot change over time; 

ii) Arrival process: follows a Poisson process (usually non-homogeneous). The users of 

each atom request service through a Poisson process, where the calls are independent 

to each other. In addition, the arrival rate functions, , for each atom must be 

known throughout the period of analysis; 

iii) Travel Times to Atoms: The function of travel times  of each pair of atoms  

and  must be known or estimated for the entire period of analysis; 

iv) System servers: there is a vector  which represents the number of servers 

spatially distributed throughout the system over the period of analysis. All servers 

can travel and serve at any of the atoms. There is a known vector, , which 

represents the number of servers ending their shift at instant . The end of a shift 

should follow a well-defined discipline according to system operation, primarily a 

preemptive (not discussed in this paper) or non-preemptive discipline; 
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v) Server location: Server location should be known at least probabilistically throughout 

the period of analysis; 

vi) Server dispatches: To answer any call, only one server is sent to the location. If no 

servers are available, calls are queued, with a FIFO discipline, or are considered 

system losses (case queue size is limited); 

vii) Server dispatch policy: for every instant, there is a dispatch preference list for each 

atom. The list may change over time; 

viii) Service Time: The service time of a server encompasses the setup time and the time 

taken to return to the base (or area) of origin. Service times should be exponentially 

distributed and do not vary over the period of analysis; and 

ix) Travel times and service times: Service times are the sum of on-scene time and travel 

times. Considering that average travel times of servers vary slowly over time, service 

times need to be calibrated for each instant of time.  in the following manner: 

. 

x) Initial solution of the system: The initial situation of the system must be known or 

estimated probabilistically in the form of a probability vector .  

 

2.4 Performance measures 

 

The solution of the mixed discrete-continuous time Markov chain is used to calculate 

various performance measures for the system. This section shows selected performance 

measures. The notations used to calculate performance measures are shown in Table 2. 

 

Table 2 – Notations for performance measures. 

Measure Meaning 

 Service level at instant , for a length of time . 

 Instantaneous probability of saturation 

 Expected number of completed services. 

 
Expected number of queued users at instant . 

 
Likelihood that an arriving user will have to wait more than  time units at instant . 

 Expected value for any variable . 

 Cumulative probability function ( ) for a variable . 

 
Expected waiting time for an arriving user at instant . 

 Instantaneous workload of server . 
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Instantaneous dispatch frequency of a server  to an atom . 

 

Instantaneous dispatch frequency of a server  to an atom  and incur no queue 

delay. 

 

Instantaneous dispatch frequency of a server  to an atom  and incur a positive 

delay. 

 
Average travel time between atoms  and  at instant . 

 Probability that a server  has its base on atom  at instant . 

 
Average travel time to a random service request that is delayed in queue at instant . 

 
System-wide average travel time at instant . 

 
Average travel time to atom  at instant . 

 
Average travel time of server  at instant . 

Source: The authors.  

 

Equation (6) shows the service level calculation as the probability of a user being 

attended to within  units of time (adapted from Ingolfsson et al., 2007). Consider that 

 represents the saturated states with  users in the queue. Note 

that  is the simplified notation of the expected number of services finished in the interval 

. Case , then . Therefore,  is the probability that an 

arriving user will receive service without waiting. Thus, . 

 

(5) 

The average number of exits from the system, , is calculated according to Equation 

(7). Note that service rate, , is considered as a function of time. It is considered that the 

service rate varies slowly over time and its variations are small compared to its total time. 

Because of this, it is possible to approximate the average number of exits considering a 

constant service time. The calculation was extended only for the case of a single end-of-shift 

throughout the interval. . 

 

(6) 
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The instantaneous expected number of queued users, , is calculated by 

Equation (8). The calculation is the same as for M(t)/M/s(t)/K systems. Where  is the 

maximum limit of users allowed in the queue. 

 

(7) 

Ingolfsson (2005) shows the calculation for a user that needs to wait longer than  

units of time in a M(t)/M/s(t)/K. Here, this calculation is extended to calculate the 

instantaneous average waiting time. The first part of the calculation is the probability that an 

arriving user at time  will wait more than  units of time, as shown in Equation (9). Note 

that new servers coming into operation not only increase the total service rate but also take 

queued users from the waiting line. Therefore,  

represents the number of users who will leave the queue due to an end-of-shift in the interval 

. 

 

(8) 

It is important to remember that the expected value of a random variable can be 

calculated following Equation (10). Where the cumulative probability function is 

represented by . 

 
(9) 

Therefore, it is derived that the expected value of the waiting time for an arriving 

user at instant  is given by Equation (11). 

 
(10) 

The workload is calculated directly by the sum of the instantaneous probabilities of 

the server being busy, as shown in Equation (12). 

 
(11) 
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The calculation of dispatch frequency (Equation 13) has been separated for dispatch 

frequencies of requests that did not incur in delays (nq) (Equation 14), and the requests that 

incurred a positive delay ( ) (Equation 15). 

 
(12) 

 

(13) 

 
(14) 

The average travel times of the system can be estimated from the function of the 

average travel times between atoms, . Using the server location matrix ( ), the 

average travel time of a server to an atom can be calculated by Equation (16). 

 

(15) 

The average travel time for calls subject to delays is calculated by Equation (17). 

Note that this calculation is different from the approximation seen in Larson (1974) and 

Larson and Odoni (1981) (and widely used in the hypercube model literature) as it explicitly 

supports heterogeneous servers and considers that some atoms may not have a server in 

there. As such, it is calculated based on the  and no longer on the proportion of arrivals 

of each atom. 

 

(16) 

The average travel time for the system can be calculated from Equation (18).  

 

(17) 

Average travel times to atoms can be calculated by Equation (19). 

 
(18) 
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Average server travel times can be calculated by Equation (20). Recall that this 

measure is used to calculate the average service time for server , as shown in assumption 

(ix). 

 

(19) 

 

3. METHODOLOGICAL PROCEDURES 

3.1 Simulation of discrete events 

 

An independent discrete-event simulation model verifies the non-stationary 

hypercube model. The simulation uses the data from the illustrative example. The simulation 

aims to point out errors or limitations of modeling the proposed hypercube model. 

Figure 5 provides a simplified schematic representation of the discrete-event 

simulation. We used the Simulink module found in the MATLAB software. Each block was 

programmed according to the assumptions presented for the non-stationary hypercube 

model. 

  

Figure 5 – Schematic representation of discrete-event simulation. 

 

 

Before describing the blocks, it is important to note that the arrows in the schematic 

figure represent the flow of entities (users) throughout the system. Another important point 
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is to define the characteristics that users have: time it was generated, location of the request, 

and time in the queue. 

The ‘Entity Generator’ block has two functions. Firstly, it uses a random number 

generator that follows a non-homogeneous Poisson process to generate entities according to 

the total rate of arrival as shown in Figure 2. Before leaving the block, the location of the 

generated user is defined according to the fractions of the arrival rates of the atoms in 

relation to the total rate of the instant that the user was generated. No user can be stored 

within this block. 

The next block is the ‘Queue’. It follows a FIFO discipline and has capacity of up to 

5 users. The time that the user queues is saved for the purpose of calculating performance 

measures. We also collect the number of queued users for the same purpose. 

The ‘Server Selector’ represents the dispatch policy of the system (dispatch 

preference list. No user is allowed to remain in the server selector, serving only as a gateway 

and not affecting the system queue capacity. 

The Gate used in front of Server 3 operates to delimit the shift in which Server 3 

operates. Therefore, the gate is only open for the first shift (between 06:00 hrs. and 15:00 

hrs.). For the rest of the time, this gate remains closed not allowing users to pass. 

The next set of blocks is the server set. Firstly, the servers have predetermined 

specific on-scene times. Before calculating the total service time, a random on-scene time is 

added to the average travel time from the server to the user’s location. This sum results in 

the service time. The on-scene time is exponentially distributed. If a service will end after 

the end of the server’s shift, the service in completed at the moment of the shift change, 

simulating an “ejected” user. “Ejected” users had their service times ignored. The waiting 

time of a user is calculated once it enters any of the server blocks. We compute whether the 

server was busy or not at each time step to calculate their workloads. 

Finally, after the service ends, users exit the system through the ‘Exit’ block. This 

block only collects the total number of users that have arrived. 
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4. RESULTS  

The continuous time Markov Chain part of the non-stationary hypercube model was 

solved using the Runge-Kutta method through the “ode45” function found in the MATLAB. 

The simulation considered a total period of 360,000 hours. The simulation took 59.9 seconds 

per round, without calculating performance measures, and 152.5 seconds per round, with the 

calculated performance measures. 

For the hypercube model, it was considered to start empty (in t=0) and runs for 48 

hours with 24-hour cycles. Only the last 24-hour cycle was considered to build the figures 

and other results. Note that in the illustrative example, the servers have no mealtime breaks. 

One round of the proposed model took around 16.7 seconds, without calculating 

performance measures, and 595 seconds with calculated performance measures. Given that 

it only took 578 seconds to calculate the average waiting times, a costly calculation due to 

the use of numerical integration. Without this measurement, the total time would be 17.6 

seconds, while the simulation would be 148.3 seconds. 

Figure 6 presents the average waiting time for the hypercube model and the 

simulation. We established a threshold of τ=4 hours to calculate waiting time, given P(W_Q 

(t)>4)<10^(-4) at any time in the illustrative example and considering that the equation 

converges asymptotically. Figure 6a shows the results for both the hypercube model and an 

average obtained at 3-minute intervals for the simulation. Note that the decreases to near 

zero at the moment of the three shift handovers (06:00 hrs., 15:00 hrs. and 23:00 hrs.), as 

expected, as all servers leave the system and new ones start operating. Figure 6b, on the 

other hand, shows that models are better correlated when waiting times are shorter. As the 

average waiting times increase, the dispersion also increases with a tendency for the 

hypercube to calculate longer waiting times. 
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Figure 6 – Average waiting times (a) and correlation (b) between the simulation and 

the non-stationary hypercube model for the illustrative example. 

 

 

 

Figure 7 explores the residuals of the average waiting times. Residuals were 

calculated as the differences between the pairs of the simulation and the non-stationary 

hypercube model. Residuals are smaller during the first shift, with shorter average waiting 

times, whereas in the other shifts the residuals have increased dispersion, moving away from 

the zero. Figure 7b shows a histogram of the residuals that, although centered close to zero, 

with an average residual of around 10-3, has an elongated tail to the left. 

   

Figure 7 - Residuals (a) and histogram (b) of the average waiting time residuals 

between the simulation and the non-stationary hypercube model. 
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System-Wide travel times change over time when dispatching fixed-base servers to 

serve requests with time-varying arrival rates (Figure 8). In Figure 8a, it is possible to see 

that, although both models present similar behaviors, around 06:00 hrs., there is a 

disturbance affecting both models. However, as shown in Figure 8b, the simulation was 

more sensitive, with a deviation of more than 1.5 minutes in relation to the hypercube 

model. The operation of server 3 is the cause of such disturbance. It has dispatch priority for 

atom W, even with an average travel time of 20 minutes. Observe that this disturbance 

spread to the next few instants, since immediately thereafter there is a negative deviation of 

almost 1 minute. Finally, during the second shift (15:00-23:00 hrs.) the residuals show a 

decreasing trend until 20:00 hrs. (same period in which the average waiting times are 

strongly increasing). This relationship helps to explain the cause of the deviations, since 

when calculating dispatch frequencies for delayed users, only the instantaneous arrival rate 

is considered. This was a necessary approximation since the non-stationary hypercube model 

is memoryless. Thus, it is not possible to predict, with any certainty, the number of users 

from each atom in the queue states. 

 

Figure 8 - Average travel times (a) and residuals (b) of average travel times between 

simulation and non-stationary hypercube model. 

 

 

Service times were calibrated according to assumption (ix) for the hypercube model. 

The simulation also has time-varying service times, depending on the travel times to the 

requests. In Figure 9A, the noise found in the simulation becomes clear, because of a 

maximum amplitude (difference between the largest and smallest element) of 0.6 calls/hour 
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for server 2, whereas the hypercube model had a maximum amplitude of 0.1 calls/hour for 

the same server. As such, there was little difference in the service times in the hypercube 

model. Figure 9B shows the histograms of the residuals. The average of the absolute 

residuals was in the order of 0.05 and the standard deviations in the order of 0.04. This gives 

a variance coefficient of close to 1, which is expected for processes with exponentially 

distributed times. However, the histograms of the residuals do not have regular and 

symmetrical formats, although they are concentrated around 0. Finally, in particular, the 

service rate of server 2 at 06:00 hrs. had a disturbance (as average travel times had), and the 

simulation was more sensitive, with a difference of 0.4 calls/hour. This result can be seen in 

both Figure 9a and the outlier found in the respective histogram in Figure 9B. 

 

Figure 9 - Service rates (a) and residual histogram (b) for all illustrative example 

servers. 

 

 

Figure 10A shows the workloads for the illustrative example and the confidence 

interval for the simulation workload. Firstly, one can observe decreases in workload at end-

of-shifts, an effect of replacing all server and the non-preemptive end-of-shift discipline. It is 
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also important to note that the workload is a continuous, instantaneous measurement 

(differently from the others so far). For this reason, noises previously present in the other 

measurements do not appear in Figure 10A. In Figure 10B, it is possible to observe that 

although both models present quite similar measures for workloads, they present a deviation 

for low workloads, usually less than 0.1 call/hour. Through Figure 10C, it is possible to 

observe the deviations on shift changes, at which time there are peaks in the relative 

residuals for all servers. However, it is important to mention that after these peaks, the 

values tend back towards zero. This effect can have two meanings. Firstly, the continuous-

time Markov chain serves as a good way to represent system behavior over time. Secondly, 

the discrete-time Markov chain for shift handovers needs to be improved since, while not 

compromising the measurement comparison itself, it generates significant residuals in 

relation to the simulation. 

  

Figure 10 - Workloads (a), correlations (b), and relative residuals (c) for all servers 

in the illustrative example. 
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6. CONCLUSION 

 

Throughout this paper, we presented a tool capable of unifying location and 

scheduling problems. The presented non-stationary hypercube model combines the 

characteristics sought by models for both mentioned problems: the time variations of a non-

stationary model and the geographic characteristics of a location problem. The model was 

presented using an illustrative example, which was also implemented in a discrete-event 

simulation model. We used the simulation to assess the ability of non-stationary hypercube 

model to represent the same system with less noise and faster computation. However, in 

shift handovers, when using a discrete-time Markov chain, the deviations were more 

pronounced. While such deviations have not mischaracterized any performance measures, it 

is appropriate to foster further studies to improve the way shift handovers are represented. In 

addition, it is important to remember that such deviations have been reduced over time with 

the use of continuous-time Markov chains. 

This has shown that location and scheduling problems can be addressed jointly, and 

no longer individually for ESSs. It is not claimed that stationary hypercube models are 

completely invalid. However, applications of the hypercube model should not only focus on 

arrival processes, but also shift handovers, even if the number of operating servers does not 

change. 

It is also understood that future applications can be realized from approximations to 

the exact model shown here. Such approximations can be assessed, as seen in Ingolfsson et 

al. (2007), from the point of view of non-stationary models. They can also be developed 

from simplifications of the hypercube model, such as the approximate models presented by 

Larson (1975) and Jarvis (1985). Recalling that the proposed model will serve as 

benchmarking for the proposed approaches. 

Finally, further research may address the deployment of the non-stationary 

hypercube model in some heuristics that formally unifies scheduling and location problems. 

In case computational times are still prohibitive, one can assume constant service times, for 

example. Another option would be to use forms of server aggregation, as proposed in 

Boyaci and Geroliminis (2015) to reduce the state space of the system. It is also understood 

that some performance measures can be improved, such as calculating the average wait time, 

which is quite costly due to numerical integration. One suggestion is to work in the same 
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manner as presented in Green and Soares (2007) for this calculation. Another measure that 

can be improved is the dispatch frequency, which, for delayed users, suffers with the 

memoryless property of hypercube models. A possible solution to this problem is to use a 

representation for the state space that is similar to that shown in Rodrigues et al. (2017). It is 

also understood that applications do not need to be limited to the classic hypercube model, 

so relaxing your simplifying assumptions according to the reality of the systems studied is 

critical. Finally, improve modeling for mealtime breaks is suggested, even for M(t)/M/s(t) 

models that consider non-preemptive end-of-shift disciplines. Perhaps the solution to this 

last suggestion lies in non-Markovian models. 

 

* This article was invited to be published in Gepros.  
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