Systematic literature review of Brazilian research on multivariate control charts

Renan Mitsuo Ueda, Leandro Cantorski da Rosa, Wesley Vieira da Silva, Ícaro Romolo Sousa Agostino, Adriano Mendonça Souza

Resumo


Purpose – This paper aims to present a Systematic Literature Review (SLR) of studies in Brazil with applications of multivariate control charts indexed in journals on the Web of Science.
Design/methodology/approach – The following steps were carried out: a detailed synthesis was performed on the general characteristics of the corpus, co-citation and collaboration networks analyzed; and a co-occurrence of terms in the text corpus was verified. A Systematic Literature Review was carried out using the protocols set out by Biolchini et al. (2007), Kitchenham (2004) and Tranfield, Denyer and Smart (2003). Papers were selected from the Web of Science database, and after applying filters, results for 29 articles were given to compose the corpus.
Findings – A tendency was found for an increase in publications, along with more international research on the issue. The journal most used for publication was the Microchemical Journal. This analysis provided relevant authors for research in this area: Harold Hotelling, Douglas Montgomery, and John Frederick MacGregor. Important Brazilian researchers were highlighted who work mainly in the pharmaceutical and biodiesel industry.
Originality/value – No articles were found that had carried out a Systematic Literature Review of Brazilian research on multivariate control charts. The main contributions to this manuscript related to an increase in scientific know-how in the area of multivariate and bibliometric analysis.
Keywords - Multivariate Control Charts. Systematic literature review. Bibliometric analysis.

Palavras-chave


Eng. da Qualidade; Engenharia de Operações e Processos da Produção; Pesquisa Operacional

Texto completo:

PDF (English)

Referências


ABREU, R. P.; SCHAFFER, J. R. A Double EWMA Control Chart for the Individuals Based on a Linear Prediction. Journal of Modern Applied Statistical Methods, v. 16, n. 2, p.443-457, 2017.

ALABI, G. Bradford’s law and its application. International Library Review, v. 11, n. 1, p.151-158, 1979.

ALMEIDA, C. P. B.; GOULART, B. N. G. How to minimize bias in systematic reviews of observational studies. CEFAC Journal, v. 19, n. 4, p.551-555, 2017.

ANDOR, M. A.; FELS, K. M. Behavioral economics and energy conservation–a systematic review of non-price interventions and their causal effects. Ecological economics, v. 148, p.178-210, 2018.

ARCHER, J. M. J.; HOSTETLER, M. E.; ACOMB, G.; BLAIR, R. A systematic review of forest bird occurrence in North American forest fragments and the built environment. Landscape and Urban Planning, v. 185, p.1-23, 2019.

ASSIS, T. F.; LOPES, D. M. M.; PEDRO, L. M.; DA SILVA, M. A. V. Systematic review of feasibility studies on transport: a contribution to waterway transport. Revista Gestão da Produção Operações e Sistemas, v. 12, n. 4, p.1, 2017.

AVILA, T. C.; POPPI, R. J.; LUNARDI, I.; TIZEI, P. A.; PEREIRA, G. A. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae. Biotechnology progress, v. 28, n. 6, p.1598-1604, 2012.

BALESTRASSI, P. P., PAIVA, A. P., SOUZA, A. C. Z., TURRIONI, J. B., POPOVA, E. A multivariate descriptor method for change-point detection in nonlinear time series. Journal of Applied Statistics, v. 38, n. 2, p.327-342, 2011.

BARROSO, J.; GOLLOP, C. J.; SANDELOWSKI, M.; MEYNELL, J.; PEARCE, P.F.; COLLINS, L.J. The Challenges of Searching for and Retrieving Qualitative Studies. Western Journal of Nursing Research, v. 25, n. 2, p.153-78, 2003.

BASTIAN, M.; HEYMANN, S.; JACOMY, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Icwsm, v. 8, p. 361-362, 2009.

BIOLCHINI, J. C. D. A.; MIAN, P. G.; NATALI, A. C. C.; CONTE, T. U.; TRAVASSOS, G. H. Scientific research ontology to support systematic review in software engineering. Advanced Engineering Informatics, v. 21, n. 2, p.133-151, 2007.

BORIN, A.; POPPI, R. J. Multivariate quality control of lubricating oils using Fourier transform infrared Spectroscopy. Journal of the Brazilian Chemical Society, v. 15, n. 4, 570-576, 2004.

BRADFORD, S. C. Documentation. London, Crosby Lockwood; Washington, Public Affairs Press, 1953.

CHAN, Z. C.; YAN, C. H.; JASON, C. H. C.; NGA, C. S.; YAN, N. K.; YIU, W. K.; KAN, Y. P. Academic advising in undergraduate education: A systematic review. Nurse education today, v. 75, p. 58-74, 2019.

COSTA, F. S. L.; PEDROZA, R. H. P.; PORTO, D. L.; AMORIM, M. V. P.; LIMA, K. M. G. Multivariate Control Charts for Simultaneous Quality Monitoring of Isoniazid and Rifampicin in a Pharmaceutical Formulation Using a Portable Near Infrared Spectrometer. Journal of the Brazilian Chemical Society, v. 26, n. 1, p.64-73, 2015.

DARMANTO, S.; ASTUTIK, S. The effectiveness of robust RMCD control chart as outliers detector. Journal of Physics, v. 943, n. 1, 2017.

DELIBERADOR, L. R.; DE MELLO, L. T. C.; BATALHA, M. O. Grain Losses in Transport and Storage: A Systematic Literature Review with Bibliometric Analysis. Revista Gestão da Produção Operações e Sistemas, v. 14, n. 5, p.174, 2019.

DRESCH, A.; LACERDA, D. P.; JÚNIOR, J. A. V. A. Design science research: research method for the advancement of science and technology. Porto Alegre: Bookman Editora, 2015.

FAISAL, M.; ZAFAR, R. F.; ABBAS, N.; RIAZ, M.; MAHMOOD, T. A modified CUSUM control chart for monitoring industrial processes. Quality and Reliability Engineering International, v. 34, n. 6, p.1045-1058, 2018.

FRUCHTERMAN, T. M. J.; REINGOLD, E. M. Graph drawing by force‐directed placement. Software: Practice and experience, v. 21, n. 11, p.1129-1164, 1991.

GALAVERNA, R.; RIBESSI, R.L.; ROHWEDDER, J. J. R.; PASTRE, J. C. Coupling Continuous Flow Microreactors to MicroNIR Spectroscopy: Ultracompact Device for Facile In-Line Reaction Monitoring. Organic Process Research & Development, v. 22, n. 7, p.780-788, 2018.

GREENHALGH, T. Papers that summarise other papers (systematic reviews and meta-analyses). BMJ, v. 13, n. 315, 1997.

GRAEFF, N.; JONGSMA, K. R.; JOHNSTON, J.; HARTLEY, S.; BREDENOORD, A. L. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philosophical Transactions of the Royal Society B, v. 374, n. 1772, p.20180106, 2019.

GUTIERREZ-SALAZAR, P.; MEDRANO-VIZCAINO, P. The effects of climate change on decomposition processes in andean paramo ecosystem–synthesis, a systematic review. Applied Ecology and Environmental Research, v. 17, n. 2, p.4957-4970, 2019.

HAQ, A.; GULZAR, R.; KHOO, M. B. C. An efficient adaptive EWMA control chart for monitoring the process mean. Quality and Reliability Engineering International, v. 34, n. 4, p.563-571, 2018.

HAIR, J. F.; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E.; TATHAM, R. L. Multivariate analysis of data. Porto Alegre: Bookman Editora, 2009.

HENNING, E.; MAIA, M. T.; WALTER, O. M. F. C.; KONRATH, A. C.; CUNHA, C. A. Application of hotelling’s T² control chart for a machining process of the inside diameter of a steel cylinder. Revista Gestão da Produção Operações e Sistemas , v. 9, n. 2, p.155, 2014.

HUANG, Y.; SCHUEHLE, J.; PORTER, A. L.; YOUTIE, J. A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for ‘Big Data’. Scientometrics, v. 105, n. 3, p.2005-2022, 2015.

KIM, S.; JEONG, M. K.; ELSAYED, E. A. Generalized smoothing parameters of a multivariate EWMA control chart. Quality & Reliability Engineering, v. 49, n. 1, p.58-69, 2017.

KITCHENHAM, B. Procedures for Performing Systematic Reviews. Keele, UK, Keele University, v. 33, p. 1-26, 2004.

LOTKA, A. J. The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, v. 16, n. 12, p.317-323, 1926.

LYU, J., CHEN, M. Automated visual inspection expert system for multivariate statistical process control chart. Expert Systems with Applications, v. 36, n. 3, p.5113-5118, 2009.

MABOUDOU-TCHAO, E. M.; SILVA, I. R.; DIAWARA, N. Monitoring the mean vector with Mahalanobis kernels. Quality Technology & Quantitative Management, v. 15, n. 4, p.459-474, 2018.

MACHADO, M. A. G.; COSTA, A. F. B.; MARINS, F. A. S. Control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The International Journal of Advanced Manufacturing Technology, v. 45, n. 7-8, p.772-785, 2009.

MARCONDES FILHO, D.; FOGLIATTO, F. S.; OLIVEIRA, L. P. L. Multivariate control charts for monitoring nonlinear batch processes. Produção, v. 21, n. 1, p.132-148, 2011.

MASON, R. L.; YOUNG, J. C. Multivariate Statistical Process Control with Industrial Applications. Siam: Philadelphia, 2002.

MCDONALD, S.; CRUMLEY, E.; EISINGA, A.; VILLANUEVA, E. Search strategies to identify reports of randomized trials in MEDLINE: protocol for a Cochrane review. Oxford: The Cochrane Library, 2006.

MICHELS, C.; FU, J. Y. Systematic analysis of coverage and usage of conference proceedings in web of science. Scientometrics, v. 100, n. 2, p.307-327, 2014.

MONDOLO, J. How do informal institutions influence inward FDI? A systematic review. Economia Politica, v. 36, n. 1, p.167-204, 2019.

MONTERO, A. C. G.; AGUADED, I.; FERRES, J. Organizational Media Competence: A Systematic Review of Scientific Literature in Web of Science. DIXIT, v. 27, p.74, 2017.

MONTGOMERY, D. C. Introduction to Statistical Quality Control. 7.ed. Rio de Janeiro: LTC, 2016.

MORAES, D. A. O.; OLIVEIRA, F. L. P.; QUININO, R. C.; DUCZMAL, L. H. Self-oriented control charts for efficient monitoring of mean vectors. Computers & Industrial Engineering, v. 75, p.102-115, 2014.

MORALES, S. O. C. Economic Statistical Design of Integrated X-bar-S Control Chart with Preventive Maintenance and General Failure Distribution. PloS one, v. 8, n. 3, p.e59039, 2013.

NEWMAN, M. E. J. Modularity and community structure in networks. Proceedings of the national academy of sciences, v. 103, n. 23, p.8577-8582, 2006.

NEWTON, G.; RACEY, M.; MARQUEZ, O.; MCKENNEY, A.; PREYDE, M.; WOSNICK, D. A Systematic Review of Tools Measuring Nutrition Knowledge of Pre‐Adolescents and Adolescents in a School‐Based Setting. Journal of School Health, v. 89, n. 5, p.402-417, 2019.

NIDSUNKID, S.; BORKOWSKI, J. J.; BUDSABA, K. The Performance of MCUSUM Control Charts when the Multivariate Normality Assumption is Violated. Thailand Statistician, v. 16, n. 2, p.140-155, 2018.

OLIVEIRA, I. K.; ROCHA, W. F.; POPPI, R. J. Application of near infrared Spectroscopy and multivariate control charts for monitoring biodiesel blends. Analytica chimica acta, v. 642, n. 1-2, p.217-221, 2009.

PAN, J. N.; LEE, C. Y. New Capability Indices for Evaluating the performance of Multivariate Manufacturing Process. Quality and Reliability Engineering International, v. 26, n. 1, p.3-15, 2010.

PEDRINI, M.; LANGELLA, V.; BATTAGLIA, M. A.; ZARATIN, P. Assessing the health research’s social impact: a systematic review. Scientometrics, v.114, n. 3, p.1227-1250, 2018.

PRADO, A. E.; CAMPO, F. C. Bibliometric analysis 1990-2014: Competitive Intelligence. Perspectiva em Ciência da Informação, v.23, n.1, p.71-88, 2018.

PRELL, C. Social network analysis: History, theory and methodology. SAGE Publications Ltd: New York, 2011.

QIU, P. Some perspectives on nonparametric statistical process control. Journal of Quality Technology, v. 50, n. 1, p.49-65, 2018.

RAFOLS, I.; PORTER, A.; LEYDESDORFF, L. Science overlay maps: A new tool for research policy and library management. Journal of the Association for Information Science and Technology, v. 61, n. 9, p.1871-1887, 2010.

RATINAUD, P.; DÉJEAN, S. IRaMuTeQ: implementation of the ALCESTE method of text analysis in free software. Modélisation appliquée aux sciences humaines et sociales MASHS, p.8-9, 2009.

REIS, F.; GUIMARÃES, F.; NOGUEIRA, L. C.; MEZIAT-FILHO, N.; SANCHEZ, T. A.; WIDEMAN, T. Association between pain drawing and psychological factors in musculoskeletal chronic pain: A systematic review. Physiotherapy theory and practice, v. 35, n. 6, p.533-542, 2019.

ROCHA, W. F. C.; POPPI, R. J. Multivariate control charts based on net analyte signal (NAS) for characterization of the polymorphic composition of Piroxicam using near infrared spectroscopy. Microchemical Journal, v. 96, n. 1, p.21-26, 2010.

ROCHA, W. F.; ROSA, A. L.; MARTINS, J. A.; POPPI, R. J. Multivariate control charts based on net analyte signal and near infrared spectroscopy for quality monitoring of Nimesulide in pharmaceutical formulations. Journal of Molecular Structure, v. 982, n. 1-3, p.73-78, 2010.

ROCHA, W. F.; POPPI, R. J. Multivariate control charts based on net analyte signal (NAS) and Raman spectroscopy for quality control of carbamazepine. Analytica chimica acta, v. 705, n. 1-2, p.35-40, 2011.

RUIZ-NEGRÓN, N.; MENON, J.; KING, J. B.; MA, J.; BELLOWS, B. K. Cost-Effectiveness of Treatment Options for Neuropathic Pain: a Systematic Review. Pharmaco Economics, v. 37, n. 5, p.669-688, 2019.

SITOE, B. V.; MITSUTAKE, H.; GUIMARAES, E.; GONTIJO, L. C.; SANTOS, D. Q.; NETO, W. B. Quality Control of Biodiesel Content of B7 Blends of Methyl Jatropha and Methyl Crambe Biodiesels Using Mid-Infrared Spectroscopy and Multivariate Control Charts Based on Net Analyte Signal. Energy & Fuels, v. 30, n. 2, p.1062-1070, 2016.

SITOE, B. V.; MÁQUINA, A. D. V.; SANTANA, F. B.; GONTIJO, L. C.; SANTOS, D. Q.; NETO, W. B. Monitoring of biodiesel content and adulterant presence in methyl and ethyl biodiesels of jatropha in blends with mineral diesel using MIR spectrometry and multivariate control charts. Fuel, v. 191, p.290-299, 2017.

SCHMITZ, E.; FIGUEIRA, S.; LAMPRON, J. Injury prevention in medical education: a systematic literature review. Journal of surgical education, v. 76, n. 3, p.700-710, 2019

SORIANO, A.; ÁLVAREZ, C. L.; VALDÉS, R. M. T. Bibliometric analysis to identify an emerging research area: Public Relations Intelligence - a challenge to strengthen technological observatories in the network society. Scientometrics, v. 115, n. 3, p.1591-1614, 2018.

SUKPARUNGSEE, S.; KUVATTANA, S.; BUSABABODHIN, P.; AREEPONG Y. Multivariate copulas on the MCUSUM control. Cogent Mathematics, v. 4, n. 1, p.1342318, 2017.

TEIXEIRA, R. C.; SOUZA, C. Evolution of competitive intelligence based on a metric study of its literature. Perspectivas em Ciência da Informação, v. 22, n. 1, p. 170-185, 2017.

TÔRRES, A. R.; GRANGEIRO JUNIOR, S.; FRAGOSO, W. D. Multivariate control charts for monitoring captopril stability. Microchemical Journal, v. 118, p.259-265, 2015.

TRANFIELD, D.; DENYER, D.; SMART, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, v. 14, p.207-222, 2003.

UGAZ, W.; SÁNCHEZ, I.; ALONSO, A. M. Adaptive EWMA control charts with time- varying smoothing parameter. The International Journal of Advanced Manufacturing Technology, v. 93, n. 9-12, p.3847–3858, 2017.

VIZEU. C. B.; JUSTO, A. M. IRAMUTEQ: a free software for analysis of textual data. Temas em psicologia, v. 21, n. 2, 2013.

WANG, R.F.; FU, X.; YUAN, J.; DONG, Z. Economic design of variable-parameter (X)over-bar-Shewhart control chart used to monitor continuous production. Quality Technology & Quantitative Management, v. 15, n. 1, p.106–124, 2018.

XIANG, Y. Joint optimization of X control chart and preventive maintenance policies: A discrete-time Markov chain approach. European Journal of Operational Research, v. 229, n. 2, p.382-390, 2013.

YIN, H.; ZHANG, G.; ZHU, H.; DENG, Y.; HE, F. An integrated model of statistical process control and maintenance based on the delayed monitoring. Reliability Engineering and System Safety, v. 133, p.323-333, 2015.

ZIPF, G. K. Human behavior and the principle of least effort. Cambridge, MA: Addison Wesley, 1949.

ZUPIC, I.; ČATER, T. Bibliometric methods in management and organization. Organizational Research Methods, v. 18, n. 3, p.429-472, 2015.




DOI: https://doi.org/10.15675/gepros.v16i1.2677

Apontamentos

  • Não há apontamentos.




Licença Creative Commons

Está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional

e-ISSN: 1984-2430
GEPROS. Gest. prod. oper. sist., Bauru, São Paulo-SP (Brasil).

Departamento de Engenharia de Produção da Faculdade de Engenharia da UNESP - Bauru

Av. Eng. Edmundo Carrijo Coube, n° 14-01 Fone: 55-14-3103-6122