M(t)/M(t)/m(t)/C(t) and non-stationary hypercube models

Regiane Máximo Siqueira

Resumo


Purpose – Verify the effect of the variation of the arrival and service rate during the day in detriment of the equilibrium analysis of the system.
Design/methodology/approach – The models M(t)/M(t)/m(t)/C(t) and the non-stationary hypercube were approached considering the change in the number of servers over time.
Findings – The study showed how the dynamic approach is more realistic than the equilibrium approach in systems where the variation of parameters is an important factor to be considered.
Originality/value – Most studies involving queue systems are based on steady-state analysis of the operation of these systems. However, for certain queuing systems, variations in customer arrival rates, service times and other operating conditions occur within very short time intervals, which makes it difficult to effectively analyze the performance of these systems.
Keywords - Queuing theory, M(t)/M(t)/m(t)/C(t) Model, Non-stationary models.
M(t)/M(t)/m(t)/C(t) and non-stationary hypercube models.


Palavras-chave


teoria das filas, modelo M(t)/M(t)/m(t)/C(t), modelos não-estacionários

Texto completo:

PDF (English)

Referências


ALANIS, R., INGOLFSSON, A., & KOLFAL, B. (2013). A Markov chain model for an EMS system with repositioning. Production and Operations Management, 22(1), 216-231.

BOFFEY B., GALVÃO R.D., ESPEJO L.G.A. (2007). A review of congestion models in the location of facilities with immobile servers. European Journal of Operational Research. 178, 643–662.

CHIYOSHI F., GALVÃO R.D., MORABITO R. (2001) Modelo hipercubo: análise e resultados para o caso de servidores não-homogêneos. Pesquisa Operacional 21(2),p.199-218.

GALVÃO, R. D., MORABITO, R. (2008). Emergency service systems: The use of the hypercube queueing model in the solution of probabilistic location problems. International Transactions in Operational Research, 15, 525-549.

IANNONI, A. P., MORABITO, R. (2007). A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Transportation Research, E 43 (6), 755- 771.

IANNONI A. P., MORABITO, R., SAYDAM, C. (2009). An optimization approach for ambulance location and the districting of the response segments on highways. European Journal of Operational Research, 195, 528-542.

INGOLFSSON A., AKHMETSHINA E., BUDGE S., LI Y., WU X. A Survey and Experimental Comparison of Service-Level-Approximation Methods for Nonstationary M_t_/M/s_t_ Queueing Systems with Exhaustive Discipline. INFORMS Journal on Computing. Vol. 19, No. 2, Spring 2007, pp. 201–214

KIM, S. H., & WHITT, W. (2013). Online Supplement to Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?

LARSON R.C. (1974). Hypercube queuing model for facility location and redistricting in urban emergency services. Computers and operations research 1, 67-95.

LARSON R.C., ODONI A.R. (2007). Urban Operations Research. 2 ed. Dynamic Ideas, Belmont, Massachusetts.

LITTLE J.D. (1961). A proof for the queueing formula: L = λ."W" . Operations Research 9, p. 383 – 387.

MAXWELL, M. S., RESTREPO, M., HENDERSON, S. G., & TOPALOGLU, H. (2010). Approximate dynamic programming for ambulance redeployment. INFORMS Journal on Computing, 22(2), 266-281.

SCHMID, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611-621.

SOUZA R. M. , MORABITO R., CHIYOSHI F. Y., IANONNI A. P. (2013). Análise da configuração de SAMU utilizando múltiplas alternativas de localização de ambulâncias. Gestão & Produção, 20(2), 287-302.

SIMPSON N.C., HANCOCK P.G. (2009) Fifty years of operational research and emergency response. Journal of the Operational Research Society 60, p. 126-139.

SMITH, J. MACGREGOR. (2010) Robustness of State-dependent Queues and Material Handling Systems. International Journal of Production Research, Volume 48, Issue 16, 4631 - 4663.

SWERSEY A.J. (1994). Handbooks in OR/MS. Amsterdam: Elsevier Science B.V., v. 6, 151-200.

STOLLETZ R. (2008) Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach . European Journal of Operational Research. 190, 478–493

WHITT, W. (1991). A review of L=W and extensions. Queueing Systems 9, 235-268.

WILMER, C. BEZERRA, C. L., VIANA P. (1995) Equações diferenciais elementares com problemas de contorno. 3 ed. Prentice-Hall, Rio de Janeiro, Rj.




DOI: https://doi.org/10.15675/gepros.v17i1.2864

Apontamentos

  • Não há apontamentos.




Licença Creative Commons

Está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional

e-ISSN: 1984-2430
GEPROS. Gest. prod. oper. sist., Bauru, São Paulo-SP (Brasil).

Departamento de Engenharia de Produção da Faculdade de Engenharia da UNESP - Bauru

Av. Eng. Edmundo Carrijo Coube, n° 14-01 Fone: 55-14-3103-6122