Comparison of PERT/CPM and CCPM Methods in Project Time Management




Gerenciamento de Projetos, Teoria das Restrições, Simulação Computacional, CCPM, PERT/CPM


Purpose: Evaluate and compare PERT/CPM and Critical Chain Project Management (CCPM) techniques, from the Theory of Constraints (TOC), in relation to indicators of delivery time estimation and reliability in meeting established deadlines.
Theoretical framework: The research is based on the time management theory established by the PERT/CPM and CCPM methods.
Design/methodology/approach: This work has an experimental character, using a method of computer simulation by applying the Promodel software. A fictitious project environment managed by PERT/CPM and CCPM techniques was modeled in order to evaluate and compare their performances in terms of estimation of, and compliance with, project completion deadlines.
Findings: The results obtained showed that the CCPM method proved to be more effective in reducing project completion time and meeting established deadlines. Conversely, the PERT/CPM method increased planned project completion time by 189%.
Research, Practical & Social implications: Many managers assume that the best approach to project planning, especially when aiming for short and reliable deadlines, is to allocate margins of safety to each scheduled activity. This research reinforced the already widely held perception of TOC that, due to certain ordinary human behaviors, local optimizations do not guarantee, and usually adversely effect, good global results.
Originality/value: There is a lack of research comparing PERT/CPM and CCPM techniques through modeling and computer simulations of project environments subjected to certain degrees of uncertainty, particularly in terms of performance variables such as those studied here. The results of this research, therefore, address this opportunity, bringing to light comparative scenarios and explanations for the different behaviors observed.
Keywords: Computational Simulation; Project Management; Goldratt; Critical Chain; CCPM; PERT/CPM.

Biografia do Autor

Caio Henrique Alberconi

Aluno do Programa de Pós-graduação- PUC RS


AGYEI, W. Project planning and scheduling using PERT and CPM techniques with linear programming: case study. International journal of scientific & technology research, v. 4, n. 8, p. 222-227, 2015.

BANKS, J.; CARSON II, J. S.; NELSON, B. L.; NICOL, D. M. Discrete-event system simulation. Prentice Hall, 2004.

BUDD, C. S.; CERVENY, J. A Critical Chain Project Management Primer. In: Cox III, J. F.; Schleier Junior, John G. Theory of Constraints Handbook. New York: McGraw-Hill, 2010. p. 45-77.

CHEN, X; LI, J-h; GAO, Q. A simple process simulation model for strategic planning on the airside of an airport: a case study. Journal Of Simulation, v. 9, n. 1, p.64-72, fev. 2015. DOI:

DANIELSON, C.; KHAN, H. Risk Analysis of project time and cost through Monte Carlo Method. 2015. Tese de Doutorado. Tese de doutorado, Stockholm, Sweden.

FALGUERA, F. P. S.; IKEZIRI, L. M.; TAKAMITSU, H. T. Portfólio de projetos de desenvolvimento de produtos: integração de práticas da corrente crítica em um modelo de referência de processo de desenvolvimento de produtos. Simpoi, 2017.

GHAFFARI, M.; EMSLEY, M. W. Current status and future potential of the research on Critical Chain Project Management. Surveys in Operations Research and Management Science, v. 20, n. 2, p. 43-54, 2015. DOI:

GOLDRATT, E. M. Corrente Crítica. São Paulo: Nobel, 1997.

GRANER, M. Method application in new product development and the impact on cross-functional collaboration and new product success. International Journal of Innovation Management, v. 18, n. 01, p. 1450002, 2014. DOI:

HALL, N. G. Project management: Recent developments and research opportunities. Journal of Systems Science and Systems Engineering, v. 21, n. 2, p. 129-143, 2012 DOI:

HARRELL, C.; GHOSH, B. K.; BOWDEN, R. Simulation Using Promodel. Mc Graw Hill, 2000.

HU, X.; Cui, N.; DEMEULEMEESTER, E.; BIE, L. Incorporation of activity sensitivity measures into buffer management to manage project schedule risk. European Journal of Operational Research, v. 249, n. 2, p. 717-727, 2016. DOI:

HUMPHREYS, G. C. Project management using earned value. Orange, CA.: Humphreys & Associates, 2014.

IKEZIRI, L. M.; SOUZA, F. B. D.; GUPTA, M. C.; CAMARGO FIORINI, P. Theory of constraints: review and bibliometric analysis. International Journal of Production Research, p.1-35, 8 set. 2018.

KARABULUT, Mertcan. Application of Monte Carlo simulation and PERT/CPM techniques in planning of construction projects: A Case Study. Periodicals of Engineering and Natural Sciences, v. 5, n. 3, 2017. DOI:

LINHART, J.; SKORKOVSKÝ, J.. Theory of Constraints and its application in a specific company. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, v. 6, p.1343-1352, 2014. DOI:

LUIZ, O. R.; SOUZA, F. B.; LUIZ, J. V. R.; JUGEND, D. Linking the critical chain project management literature. International Journal of Managing Projects in Business, 2019. DOI:

MA, C.; HU, W.; DENG, Y. Application of Improved Critical Chain and Earned Value Technique in Software Engineering & Integrated Project Progress Control. In: 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE, 2019. p. 136-142. DOI:

PMI. PMSURVEY.ORG. Project Management Institute, 2014.

PMI. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 5. ed. EUA: Project Management Institute, 2013.

PMI. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 6. ed. EUA: Project Management Institute, 2017.

PROMODEL CORPORATION. ProModel 2014 User Guide. ProModel Corporation, 2015.

RADUJKOVIĆ, M.; SJEKAVICA, M. Project management success factors. Procedia engineering, v. 196, p. 607-615, 2017. DOI:

ROGHANIAN, E.; ALIPOUR, M.; REZAEI, M. An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. International Journal of Construction Management, v. 18, n. 1, p. 1-13, 2018. DOI:

STEYN, H. An investigation into the fundamentals of critical chain project scheduling. International Journal of Project Management., p. 363-369. 2000. DOI:

STEYN, H.. Project management applications of the theory of constraints beyond critical chain scheduling. International Journal of Project Management. p. 75-80, 2002. DOI:

SUZEK, H.; BING, W. X. Increased productivity in a production system through computer simulation. Brazilian Journal of Development, v. 6, n. 5, p. 29847-29861, 2020. DOI:

VERGARA, W. R. H.; TEIXEIRA, R. T.; YAMANARI, J. S. Análise de risco em projetos de engenharia: uso do PERT/CPM com simulação. Exacta, v. 15, n. 1, p. 75-88, 2017. DOI:

WEI, C.; LIU, P.; TSAI, Y. Resource-constrained project management using enhanced theory of constraint. International Journal of Project Management. p. 561-567, 2002. DOI:

YANG, S.; FU, L. Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process. International Journal of Project Management., p. 166-177. 2014. DOI:

ZARGHAMI, S. A.; GUNAWAN, I.; CORRAL DE ZUBIELQUI, G.; BAROUDI, B. Incorporation of resource reliability into critical chain project management buffer sizing. International Journal of Production Research, v. 58, n. 20, p. 6130-6144, 2020. DOI:

ZHANG, J.; SONG, X.; DÍAZ, E. Critical chain project buffer sizing based on resource constraints. International Journal of Production Research, v. 55, n. 3, p. 671-683, 2017. DOI:


Arquivos adicionais



Como Citar

Takami Narita, T., Alberconi, C. H., Souza, F. B. de, & Ikeziri, L. (2021). Comparison of PERT/CPM and CCPM Methods in Project Time Management. Revista Gestão Da Produção Operações E Sistemas, 16(3), 01.